
Pvote Software Review Assurance Document

Ka-Ping Yee
ping@zesty.ca

March 29, 2007

Acknowledgements

David Wagner reviewed this document extensively and made many suggestions
that have led to substantial improvements. David Wagner, Marti Hearst, Noel
Runyan, Scott Luebking, and Steven Bellovin all participated in discussions that
have influenced the design of Pvote. I am grateful to Lisa Friedman for her support
during the production of this document.

1

Contents

1 Scope 4
1.1 Overview . 4
1.2 Responsibilities . 4
1.3 Assumptions . 5
1.4 Threats in scope . 6
1.5 Threats out of scope . 6
1.6 Other questions to consider . 7

2 Ballot Definition Format 8
2.1 Overview . 8
2.2 Data types and their serialization . 9

2.2.1 Primitive types . 9
2.2.2 Compound types . 9

2.3 Model . 11
2.3.1 Groups . 11
2.3.2 Pages . 12

2.4 Text . 15
2.5 Audio . 15
2.6 Video . 15
2.7 Validity constraints . 16

3 Pthin 19
3.1 Types . 19
3.2 Namespaces . 21
3.3 Statements . 21
3.4 Functions . 22
3.5 Classes and objects . 23
3.6 Built-in functions and methods . 23
3.7 Readable stream objects . 24
3.8 Memory management . 24

3.8.1 Data . 24
3.8.2 Stack . 24

4 Pygame 25
4.1 Events . 25
4.2 Audio . 26
4.3 Video . 27

2

CONTENTS 3

5 SHA 28

6 Pvote 29
6.1 Design . 29
6.2 Source Code . 31

6.2.1 main.py . 32
6.2.2 Ballot.py . 33
6.2.3 verifier.py . 37
6.2.4 Navigator.py . 41
6.2.5 Audio.py . 45
6.2.6 Video.py . 46
6.2.7 Printer.py . 47

7 Correctness claims 48
7.1 No negative integers . 48
7.2 Navigator starts on page 0 in state 0 48
7.3 Ballot is committed on the last page 48
7.4 Overvoting is impossible . 49
7.5 Contest options cannot be selected twice 49
7.6 Bounded function call depth . 49
7.7 Bounded iteration . 49
7.8 At most one audio clip plays at a time 51
7.9 Timeout occurs after timeout_ms ms of idle silence 51
7.10 Ballot definition is never changed . 51
7.11 Responsibilities established . 52

A Glossary 57

B Deployment example 58
B.1 Before election day . 58
B.2 Election day before polls open . 58
B.3 Election day with polls open . 59
B.4 Election day after polls close . 59

C WAV audio file format 60

1. Scope 4

Chapter 1

Scope

This document is a preparatory guide for reviewers of the Pvote software for voting
machines, which is based on the prerendered user interface approach. Pvote is
implemented in a subset of Python.

Pvote is not a complete voting system. It is just the component responsible
for presenting the ballot to the voter and recording the voter’s selections. (The
EVT paper on prerendered user interfaces for voting argues that this is a crucial
component to get right because the voting interactions of individual voters must
be kept secret, whereas other parts of the process can be made publishable.) Voter
registration, vote tallying, and administrative functions are not part of Pvote.

The following sections set out expectations for the scope of the review based on
Pvote’s design assumptions and design intent. However, as reviewers, if you find
it necessary to look beyond the scope suggested here, you should feel free to direct
the course of the review as you see fit.

1.1 Overview

Pvote is intended to be small and not changed often. The election parameters and
the voting user interface are described by a ballot definition file that Pvote accepts
as input. Pvote is flexible enough to support a wide range of election types and
interface designs, just by using different ballot definition files. It can be considered
a virtual machine for a high-level user interface specification language.

Pvote could be used as the core user interface component of a cryptographically
auditable voting system, an electronic ballot marking or printing device, a DRE
with a paper or audio audit trail, or (gasp!) a paperless DRE.

1.2 Responsibilities

We say committed to mean voter selections are finalized as far as the machine is
concerned — for a DRE this means “recorded” or “cast,” but for a ballot printer
this means “printed.” A voting session consists of the time from when a voting
machine starts interacting with a particular voter (e. g. when the first screen of the
voting user interface comes up) until the ballot is committed or the voter abandons
the machine. This does not include per-voter initialization steps by pollworkers.

1. Scope 5

We intend to establish that Pvote can be relied upon to do the following:

R1. Never abort during a voting session. (Specifically, given any particular
ballot definition, Pvote should either always reject it as invalid and abort
immediately without starting a voting session, or always accept it as valid
and never abort during any voting session with that ballot definition.)

R2. Remain responsive during a voting session.
R3. Become inert after a ballot is committed.
R4. Display a completion screen when and only when a ballot is committed, and

continue to display this screen until the next session begins.
R5. Exhibit behaviour in each session independent of any previous sessions.
R6. Exhibit behaviour independent of which parts of buttons are touched (all

touch points within a target region should be equivalent).
R7. Exhibit behaviour that is determined entirely by the ballot definition and the

stream of user input events and their timing.
R8. Commit valid selections (no overvotes and no invalid candidates or contests).
R9. Commit the ballot when and only when so requested by the voter.

R10. Correctly and unambiguously commit the selections the voter made.

Pvote should also do the following correctly, according to the ballot definition:

R11. Present instructions, contests, and options as specified.
R12. Navigate among instructions, contests, and options as specified.
R13. Select and deselect options according to user actions as specified.
R14. Correctly indicate which options are selected, when directed to do so.
R15. Correctly indicate whether options are selected, when directed to do so.
R16. Correctly indicate how many options are selected, when directed to do so.

1.3 Assumptions

A1. The voting machine software (ostensibly Pvote) is handed over for review
before the election.

A2. The software that runs on the voting machines on election day is exactly what
was reviewed.

A3. Pvote is started once per voting session.
A4. Only authorized voters are allowed to carry out voting sessions.
A5. Ballot definition files are published for review and testing before the election.
A6. The correct ballot definition is selected and used for each voting session.
A7. The ballot definitions used on election day are intact, exactly as they were

reviewed.
A8. The programming language functions correctly (according to the behaviour

specified in Chapter 3).
A9. The operating system and software libraries function correctly (according to

the behaviour specified in Chapters 4 and 5).
A10. The voting machine hardware functions correctly.

1. Scope 6

1.4 Threats in scope

• Voters. Voters can interact with Pvote using the touchscreen and keypad.
Is there any sequence of interactions that can cause Pvote to allow a voter
to commit multiple ballots (R3), allow committing of an invalid ballot (R8),
mislead pollworkers about whether a ballot has been committed (R4), or
violate voter privacy (R5)?

• Bugs. Though bugs are not usually considered security threats in the sense
of being willful attackers, they do threaten the integrity of the election. Can
any valid ballot definitions or user interactions ever cause Pvote to behave
incorrectly (R1, R2, R6, R7, R8, R9, R10, R11, R12, R13, R14, R15, R16)?

• Insiders among voting software suppliers. Pvote could be modified to
contain backdoors or hidden weaknesses before being handed over for
review and installation. Could an attacker make effective changes that would
go unnoticed by reviewers? What effect does Pvote have on the difficulty
of performing or detecting such subversion? (This is the “meta-threat”
corresponding to the two preceding items.)

• Insiders among election officials. Ballot definitions could be designed or
altered to contain the wrong information or bias the vote. Could an attacker
subvert ballot definitions in a way that would go unnoticed by reviewers
and testers? What effect does Pvote have on the difficulty of performing or
detecting such subversion?

1.5 Threats out of scope

• Insiders among pollworkers. We are relying upon pollworkers not to give
voters multiple sessions (A3), not to let unauthorized people vote (A4), and
to select the correct ballot style for each voter (A6). We assume election
procedures make it hard for an insider working alone to violate these rules.

• Tampering with the software distribution. We assume the software is not
altered between review and use (A1, A2).

• Tampering with the ballot definition. We assume the ballot definition is not
altered between review and use (A5, A7).

• Tampering with cast vote records. We assume that if Pvote is used in a DRE,
some other mechanism will be responsible for protecting the integrity of the
vote records that Pvote outputs.

• Faulty or subverted non-voting-specific software. We assume that the
software components that are not specific to voting function correctly (A8,
A9). The threat of attacks on Pvote via these software components can be
largely eliminated by choosing to use versions of such software that were
released before Pvote was created.

• Faulty or subverted hardware. This is a software review (A10).
• Poor ballot design. We don’t claim that using Pvote eliminates accessibility

or usability problems, though testing with the published ballot definitions
might help reveal some of these problems in time to address them.

1. Scope 7

1.6 Other questions to consider

Depending on the time available, we may be able to look at a broader set of
questions surrounding Pvote.

Testing is an issue closely related to security and reliability that may be worth
examining. How would Pvote affect the testing process?

• Does Pvote change the required amount of testing?
• Does Pvote change the level of confidence attainable through testing?
• Does Pvote increase or decrease the effectiveness of existing kinds of testing?

Some types of testing to consider are:

– unit testing
– system testing
– manual testing
– automated testing
– parallel testing
– logic and accuracy testing

• Does Pvote make feasible any new kinds of tests?

How does using Pvote affect the ability to mix and match components from
different vendors, and what influence would this have on testing and reliability?

How does using Pvote affect the difficulty of reviewing the voting system?
Post-election audits are also an important diagnostic and recovery tool. How

does Pvote affect the ability to audit the voting system?
Finally, there is the question of integration with existing and proposed systems

and practices. Running an election requires many other components in addition
to Pvote. How would or could Pvote interoperate with these other components?
How does it compare with, and interoperate with, other software-independent
approaches to electronic voting?

2. Ballot Definition Format 8

Chapter 2

Ballot Definition Format

The format of the ballot definition file is central to Pvote’s design, as it specifies
all the capabilities of the voting user interface. The ballot definition describes a
state machine where each transition is triggered by a user action or by an idle
timeout. Executing a transition can cause options to be selected or deselected.
Audio feedback can be associated with states and with transitions between states.

2.1 Overview

The ballot definition contains four parts:

• Ballot model: structure of the ballot and interaction flow of the user interface.
• Text data: information for the printer.
• Audio data: sound data for the audio driver.
• Video data: image and layout data for the video driver.

The ballot model consists of:

• Groups: sets of options for the voter to select.
• Pages: the coarse-grained unit of navigation; a full-screen display state.

Pages contain finer-grained states for navigation within a page. Both pages
and states have bindings, which map keypresses and screen touches to
selection and navigation actions. Pages and states specify audio feedback in
terms of sequences of audio segments. Both bindings and segments may be
subject to conditions concerning the voter’s current selections. Finally, areas
are parts of the page that change according to the voter’s selections.

The text data contains the names of the contests and candidates. The audio data
contains a collection of sound clips. The video data contains:

• Layouts: the visual appearance of a page. Each layout corresponds to one
page. The layout contains a full-screen image for the page. It also specifies
the locations of targets (screen regions that respond to touch) and slots
(screen regions where sprites are pasted). Targets invoke bindings; areas are
associated with slots.

• Sprites: smaller images for pasting over variable parts of the display.

2. Ballot Definition Format 9

The next few sections will describe in more detail the contents of these data
structures and what they mean, and set out the constraints that have to be met
for a ballot definition file to be considered valid.

2.2 Data types and their serialization

2.2.1 Primitive types

The data structures are built up from the following types:

• int: An integer in the range from 0 to 2147483647 (0x7fffffff) inclusive.
Serialized as four bytes, most significant first.

• intn: An integer in the range from 0 to 2147483647 (0x7fffffff) inclusive,
or the special value None. An integer value is serialized as four bytes, most
significant first; the value None is serialized as "\xff\xff\xff\xff" .

• bool: A Boolean value. Truth is serialized as "\x00\x00\x00\x01" and
falsehood is serialized as "\x00\x00\x00\x00" .

• enum: A value from a finite set of identifiers. Each of the three uses of enum
(in Step , Segment , and Condition) has a distinct domain. Values of an enum
correspond to small integers and are serialized in the same way as an int.

• str: A string of ASCII bytes with length from 0 up to 2147483647, where each
byte is at least 32 and at most 125. Serialized as a four-byte integer length
followed by the bytes of the string.

• pixel: A pixel colour with red, green, and blue components, each ranging
from 0 to 255 inclusive. Serialized as three bytes (red, green, blue).

• sample: An individual audio sample value ranging from -32768 to 32767
inclusive. Serialized as a 16-bit signed integer, most significant byte first.

2.2.2 Compound types

The top-level compound type for the entire ballot definition is Ballot . A ballot
definition file consists of an 8-byte identifying header, followed by the serialized
content of the Ballot structure, followed by the 20-byte SHA-1 digest of the
serialized content. The header is "Pvote\x00\x01\x00" , where the last two
bytes are the major and minor version number of the format.

Figure 2.1 depicts the exact structure of Ballot , which is shown as the heavy
box at the top. Within this box, the internal structure of all its constituent types is
revealed, except for Binding and Segment , which are described in the boxes below.
The figure shows all the fields in the order they are serialized. Each compound
type is serialized simply by concatenating its serialized fields with no padding.

Many fields contain lists of elements. A list can have from 0 to 2147483647
elements. A list is serialized as a four-byte integer length followed by all the
elements serialized in order. All the list fields (those marked with []) are serialized
in this fashion, except the pixels field of an Image . The pixels field is serialized
with no length, since the length is already determined by the width and height
fields of the Image .

2. Ballot Definition Format 10

Ballot

Model model

Group[] groups

int max_sels
int max_chars
int option_clips

Option[] options

int sprite_i
int clip_i
intn writein_group_i

Page[] pages → 1 layout

Binding[] bindings (see below)

State[] states → 1 slot

int sprite_i
Segment[] segments (see below)

Binding[] bindings (see below)

Segment[] timeout_segments
intn timeout_page_i
int timeout_state_i

OptionArea[] option_areas
→ 1 slotint group_i

int option_i

CounterArea[] counter_areas
→ 1 slotint group_i

int sprite_i

ReviewArea[] review_areas
→ (1 + max_chars)
×max_sels slotsint group_i

intn cursor_sprite_i

int timeout_ms

Text text

TextGroup[] groups

str name
bool writein
str[] options

Audio audio

int sample_rate

Clip[] clips

sample[] samples

Video video

int width , height

Layout[] layouts

Image screen

int width , height
pixel[width × height] pixels

Rect[] targets

int left , top
int width , height

Rect[] slots

int left , top
int width , height

Image[] sprites

int width , height
pixel[width × height] pixels

Binding
intn key
intn target_i
Condition[] conditions

Step[] steps

enum op ∈ {0, 1, 2, 3, 4}
intn group_i
int option_i

Segment[] segments
intn next_page_i
int next_state_i

Segment
Condition[] conditions
enum type ∈ {0, 1, 2, 3, 4}
int clip_i
intn group_i
int option_i

Condition
enum predicate ∈ {0, 1, 2}
intn group_i
int option_i
bool invert

Figure 2.1: Ballot definition data structures. A double border around a subelement
signifies a list of subelements of that type.

2. Ballot Definition Format 11

2.3 Model

The model contains Group s, which describe the ballot structure, and Pages, which
describe the user interface. The model also has one integer field, timeout_ms ,
which specifies an idle timeout in milliseconds. A timeout is defined to occur when
there has been no user activity and no audio playing for timeout_ms milliseconds.
The ballot definition can specify an automatic transition or audio message to occur
in case of a timeout.

Each field whose name ends with _i is an integer index that refers to an element
of a list elsewhere in the structure.

2.3.1 Groups

A Group is a container of selectable options. Groups are used for two purposes: as
contest groups and as write-in groups. A contest group represents an actual contest on
the ballot; its options are options such as candidates. A write-in group represents a
single write-in entry field; its options are the individual characters that can appear
in the entry field. In all cases, the current selection for a group is a list of options
(even though a contest selection has set-like semantics and a write-in selection has
ordered sequence semantics). The fields in a Group are:

• max_sels : The maximum allowed number of selections in the group.
• max_chars : For contest groups, this is the maximum number of characters

that can be entered for any write-in option in the contest. If this is zero, the
contest has no write-ins. For write-in groups, max_chars must be zero.

• option_clips : The number of audio clips associated with each option.
• options : The list of options in the group.

Each option (in any kind of group) is associated with exactly two sprites, one
to display when the option is selected, and one to display when it is not selected.
Each option can be associated with any number of audio clips (the same number
for all options in a group, specified by option_clips in the Group). These come
from the sprites and clips lists in the Video and Audio structures, respectively.
There are three fields in an Option :

• sprite_i : An index into video.sprites . The sprite at index sprite_i
is shown for the selected option, and the sprite at index sprite_i + 1 is
shown for the unselected option.

• clip_i : An index into audio.clips . The clips with indices from clip_i
to clip_i + option_clips − 1 are used to represent the option.

• writein_group_i : If this field is None, this option is a regular option.
Otherwise, this option is a write-in option; writein_group_i specifies the
write-in group that will hold the text entered for this write-in.

Note the logical relationships among these fields. If a group’s max_chars is
zero, then all its options must have None as their writein_group_i . Only in a
contest group may writein_group_i can take on values other than None; these
values must be the indices of write-in groups. The referenced write-in groups
must have max_chars set to zero and max_sels equal to the contest group’s
max_chars . These relationships are summarized in the following table.

2. Ballot Definition Format 12

Type of group Kinds of options it contains writein_group_i

contest group regular option None

(max_chars ≥ 0) write-in option index of a write-in group
write-in group character option None

(max_chars = 0)

Table 2.1: Types of groups and the options they contain.

2.3.2 Pages

The Page represents an overall display appearance such as a page of instructions
or a selection page for a particular contest. The fields in a Page are as follows:

• bindings : Bindings that apply in all the states in this page.
• states : States that belong to this page (i. e. have this overall appearance).
• option_areas : Parts of the visual display that show specific options and

indicate whether the options are selected or unselected.
• counter_areas : Parts of the visual display that change based on the

number of options that are selected in a particular group.
• review_areas : Parts of the visual display that list all the selected options

(with their write-in text, if any) in a particular group.

There is a one-to-one correspondence between pages and layouts: item i in the
Model ’s list of pages corresponds to item i in the Video ’s list of layouts . The
corresponding Layout gives the full-screen image for the page. The slots in the
Layout also correspond to elements of the page: if there are s states, o option areas,
c counter areas, and r review areas, then the states get the first s slots in the list,
the option areas get the next o slots, the counter areas get the next c slots, and the
review areas get the rest.

An OptionArea has two fields, group_i and option_i , which give the index
of a group in the Model ’s groups and the index of the option in that group’s list of
options that will appear in the option area’s slot.

A CounterArea has two fields, group_i and sprite_i . The sprite at index
sprite_i + n will appear in the counter area’s slot, where n is the number of
options currently selected in group group_i .

A ReviewArea has two fields, group_i and cursor_sprite_i . For each of
the selected options in group group_i , the review area uses one slot for the option
and max_chars slots for its write-in characters, for a total of (1 + max_chars)
× max_sels slots. The cursor_sprite_i field can be None, or it can specify a
sprite to be shown in the first unused option slot when the group is not full.

The actual states of the state machine are represented by the State data
structure. The states are grouped into pages because several states often share
a similar display appearance (e. g. states could highlight different user interface
elements in a fixed layout of elements on the screen) and similar behaviours (e. g.
the “next page” button, a common element of voting user interfaces, takes you
to a new screen regardless of which element has the focus on the current screen).
Organizing states into pages reduces redundancy and simplifies the work of ballot
definition creators and reviewers.

2. Ballot Definition Format 13

A State has these fields:

• sprite_i : A sprite to be displayed in the state’s slot while in this state.
• segments : A list of audio segments (see Audio feedback below).
• bindings : Bindings that apply to just this state. These override page-level

bindings; when the user presses a key or touches a target, an operative
binding is sought first in the State and then in the Page.

• timeout_segments : A list of audio segments to be played upon timeout
(see Audio feedback below).

• timeout_page_i , timeout_state_i : The state to automatically enter
upon timeout. If timeout_page_i is None, no automatic transition occurs.

User input

The lists of Binding s in pages and states specify behaviour in response to user input.
Each binding specifies a triplet of stimulus, condition, and response.

There are two kinds of stimuli: keypresses, which are received as an integer key
code, and screen touches, which are translated into a target index by looking up the
screen coordinates of the touch point in the layout’s list of targets . A binding can
specify either a key code or a target index or both. A binding is said to match the
stimulus if it specifies the pressed key or touched target.

The condition specifies constraints on the current selection state in order for the
binding to apply. A binding is considered operative if its condition is satisfied.

The response consists of three parts: selection operations (given as Steps), audio
feedback (given as Segment s), and navigation. To invoke a binding is to carry out
the response. When the user provides a stimulus, at most one binding is invoked:
the first matching, operative binding found in the current state or the current page.

The fields in a Binding are:

• key : A key code that this binding will match.
• target_i : A target index that this binding will match.
• conditions : A list of Condition s that must all be satisfied in order for this

binding to be operative.
• steps : A list of Steps to be carried out when this binding is invoked.
• segments : A list of Segment s to be played when the binding is invoked.
• next_page_i , next_state_i : The state to enter when this binding is

invoked. If next_page_i is None, no state transition occurs.

A Condition has four fields:

• predicate : One of the following predicate types.

0. PR_GROUP_EMPTY: Satisfied when a group is empty.
1. PR_GROUP_FULL: Satisfied when a group is full.
2. PR_OPTION_SELECTED: Satisfied when a specific option is selected.

• group_i , option_i : Identifies the group or option to which the predicate
is applied (see Group and option references below).

• invert : If true, the sense of the condition is inverted.

2. Ballot Definition Format 14

A Step has three fields:

• op : One of the following operation types.

0. OP_ADD: Append the specified option to its group’s selection list if not
already present.

1. OP_REMOVE: Remove the specified option from its group’s selection list
if it is present.

2. OP_APPEND: Append the specified option to its group’s selection list.
3. OP_POP: Remove the last option from the specified group’s selection list.
4. OP_CLEAR: Clear the specified group’s selection list.

• group_i , option_i : Identifies the group or option to which the operation
is applied (see Group and option references below).

Audio feedback

Audio feedback is specified as a list of segments. Some segments simply play a
particular clip; others can play different clips depending on the selection state.

At any given moment, at most one clip can be playing at a time; there is a play
queue for clips waiting to be played next. Whenever a clip finishes playing, the
next clip from the queue immediately begins to play, unless the queue is empty.

Invoking a binding always interrupts any currently playing clip and clears
the play queue. The segments for the binding, if any, are queued first; if a state
transition occurs, the segments for the newly entered state are queued next.

The fields in a Segment are:

• conditions : A list of Condition s that must all be satisfied in order for
this segment to be considered (otherwise, it is skipped). The conditions
are evaluated when the segment list is being queued, immediately after
executing the steps of a Binding , after entering a new State , or on timeout.

• type : One of the following segment types.

0. SG_CLIP: Play the clip at clip_i .
1. SG_OPTION: Play the clip at offset clip_i from the specified option’s

clip_i . If the option has a write-in group, also play the clips for all
the selected options in the write-in group (when playing the character
options for a write-in, use each option’s clip_i with no offset).

2. SG_LIST_SELS: For each selected option in the specified group, play
the clip at offset clip_i from the selected option’s clip_i . If the
option has a write-in group, also play the clips for all the selected options
in the write-in group (use each option’s clip_i with no offset).

3. SG_COUNT_SELS: Play the clip at offset n from the specified clip_i ,
where n is the number of selected options in the specified group.

4. SG_MAX_SELS: Play the clip at offset n from the specified clip_i ,
where n is max_sels for the specified group.

• clip_i : A clip index or offset applied to a clip index, depending on type .
• group_i , option_i : Identifies the option or group for which a clip is

played (see Group and option references below).

2. Ballot Definition Format 15

Group and option references

In a Condition , Step , or Segment , the pair of fields group_i and option_i is used
to refer to a group or option. If group_i is None, then option_i is the index of an
OptionArea on the current page; the pair (group_i , option_i) indirectly refers to
the group or option of this OptionArea . Otherwise, the pair (group_i , option_i)
directly refers to group group_i in the Model ’s list of groups or option option_i
in that Group ’s list of options .

2.4 Text

The text data provides textual labels for groups and options so that the user’s
selections can be printed out. The Text structure has just one field, groups , which
is a list of of TextGroup s. Each TextGroup has three fields:

• name: The name of the group.
• writein : If true, the group is to be printed as a write-in group. Otherwise,

the group is to be printed as a contest group.
• options : A list of the names of the options in the group.

2.5 Audio

The Audio structure contains two fields:

• sample_rate : The playback rate in samples per second.
• clips : A list of audio clips, referenced by index in Option and Segment

structures.

Each clip is a Clip structure, which contains just one field:

• samples : A list of signed 16-bit samples. Audio clips have one channel.

2.6 Video

The Video structure has the following fields:

• width , height : The display screen resolution.
• layouts : A list of Layout s, one for each Page in the Model .
• sprites : A list of Images for pasting onto the display, referenced by index

in Option , State , and ReviewArea structures.

The fields in a Layout are as follows:

• screen : The full-screen page image (over which sprites will be pasted).
• targets : A list of rectangular screen regions where touches will be detected

and acted upon.
• slots : A list of rectangular screen regions where sprites will be pasted.

Images are specified as an integer width and integer height followed by pixel
data (3 bytes per pixel). The rectangular regions for targets and slots are specified
as four integers, left , top , width , and height .

2. Ballot Definition Format 16

2.7 Validity constraints

A ballot definition is considered valid if it meets the constraints in this section.
These constraints are intended to be sufficient (though not necessary) to ensure
that Pvote will not terminate abnormally through a fatal runtime error at the
language level or illegal calls to library routines. Possible causes of such errors
are pointed out in the specifications given in Chapters 3, 4, and 5. For example,
these constraints try to ensure that list indices will be within bounds, but not that
every option appears on the ballot. No rules can enforce the correctness of the user
interface, so the job of helping humans evaluate ballot designs is left to other tools
(which can apply usability recommendations or region-specific election rules).

The following specification of the data structures is annotated with validity
constraints on the right. In these constraint expressions, all arithmetic is performed
with mathematical integers. length(x) refers to the length of a list x, and the symbol
$ means “sizes match” (that is, a $ b ⇔ a.width = b.width and a.height =
b.height). For brevity, some unqualified names are used:

• groups and pages refer to the fields of the Model object
• group and page refer to the Group or Page containing the current element
• clips refers to the field of the Audio object
• sprites refers to the field of the Video object

1 Ballot:
2 Model model
3 Text text
4 Audio audio
5 Video video

6 Model:
7 Group[] groups length(groups) = length(text.groups) > 0

8 Page[] pages length(pages) = length(layouts) > 0

9 int timeout_ms

10 Group:
11 int max_sels
12 int max_chars
13 int option_clips option_clips > 0

14 Option[] options

15 Option:
16 int sprite_i sprite_i + 1 < length(sprites)

sprites[sprite_i] $ sprites[sprite_i + 1] $ group ’s option size
17 int clip_i clip_i + group.option_clips − 1 < length(clips)
18 intn writein_group_i writein_group_i 6= None⇒ (writein_group_i < length(groups) and

groups[writein_group_i].max_chars = 0 and
groups[writein_group_i].max_sels = group.max_chars > 0 and
∀ option ∈ groups[writein_group_i].options :

sprites[option.sprite_i] $ group ’s character size)19 Page:
20 Binding[] bindings
21 State[] states length(states) > 0

22 OptionArea[] option_areas
23 CounterArea[] counter_areas
24 ReviewArea[] review_areas

2. Ballot Definition Format 17

25 State:
26 int sprite_i sprite_i < length(sprites)

sprites[sprite_i] $ slots[state_i]

27 Segment[] segments
28 Binding[] bindings
29 Segment[] timeout_segments
30 intn timeout_page_i timeout_page_i 6= None⇒ timeout_page_i < length(pages)
31 intn timeout_state_i timeout_page_i 6= None⇒ timeout_state_i < length(page[timeout_page_i].states)

32 OptionArea:
33 int group_i group_i < length(groups)
34 int option_i option_i < length(groups[group_i].options)

option area’s slot $ groups[group_i] ’s option size
35 CounterArea:
36 int group_i group_i < length(groups)
37 int sprite_i sprite_i + groups[group_i].max_sels < length(sprites)

∀ i ∈ {0, 1, 2, . . . , groups[group_i].max_sels }:
counter area’s slot $ sprites[sprite_i + i]

38 ReviewArea:
39 int group_i group_i < length(groups)
40 intn cursor_sprite_i cursor_sprite_i 6= None⇒ (cursor_sprite_i < length(sprites) and

sprites[cursor_sprite_i] $ groups[group_i] ’s option size)

review area’s option slot $ groups[group_i] ’s option size
∀ slot ∈ review area’s character slots:

slot $ groups[group_i] ’s character size
41 Binding:
42 intn key
43 intn target_i
44 Condition[] conditions
45 Step[] steps
46 Segment[] segments
47 intn next_page_i next_page_i 6= None⇒ next_page_i < length(pages)
48 intn next_state_i next_page_i 6= None⇒ next_state_i < length(page[next_page_i].states)

49 Condition:
50 enum predicate predicate ∈ {0, 1, 2}
51 intn group_i group_i 6= None⇒ group_i < length(groups)
52 int option_i group_i = None⇒ option_i < length(page.option_areas)

group_i 6= None⇒ option_i < length(groups[group_i].options)53 bool invert

54 Step:
55 enum op op ∈ {0, 1, 2, 3, 4}
56 intn group_i group_i 6= None⇒ group_i < length(groups)
57 int option_i group_i = None⇒ option_i < length(page.option_areas)

group_i 6= None⇒ option_i < length(groups[group_i].options)
58 Segment:
59 Condition[] conditions
60 enum type type ∈ {0, 1, 2, 3, 4}
61 int clip_i type = 0 ⇒ clip_i < length(clips)

type ∈ {1, 2} ⇒ clip_i < groups[g].option_clips

type ∈ {3, 4} ⇒ clip_i + groups[g].max_sels < length(clips)
where g = group_i if group_i 6= None, or

g = page.option_areas[option_i].group_i otherwise

62 intn group_i group_i 6= None⇒ group_i < length(groups)
63 int option_i type 6= 0 and group_i = None⇒ option_i < length(page.option_areas)

type 6= 0 and group_i 6= None⇒ option_i < length(groups[group_i].options)

2. Ballot Definition Format 18

64 Text:
65 TextGroup[] groups ∀ i ∈ {0, 1, 2, . . . , length(groups) - 1}:

length(groups[i].options) = length(model.groups[i].options)

66 TextGroup:
67 str name length(name) ≤ 50

68 bool writein
69 str[] options ∀ s ∈ options , length(s) ≤ 50

70 Audio:
71 int sample_rate
72 Clip[] clips

73 Clip:
74 sample[] samples length(samples) > 0

75 Video:
76 int width width > 0

77 int height height > 0

78 Layout[] layouts
79 Image[] sprites

80 Layout:
81 Image screen screen $ video

82 Rect[] targets
83 Rect[] slots

84 Image:
85 int width width > 0

86 int height height > 0

87 pixel[width*height] pixels

88 Rect:
89 int left
90 int top
91 int width left + width ≤ video.width

92 int height top + height ≤ video.height

Some of the above constraints refer to the option area’s slot, counter area’s slot,
and review area’s slots, which are slots taken from the slots list of the page’s
corresponding Layout object, as described in Section 2.3.2.

The size constraints on sprites and slots also refer to the option size and character
size of a group, even though the Group structure doesn’t have fields for specifying
option size and character size. This just means that all the objects that are required
to match a particular group’s option size must all have the same size, and all the
objects that are required to match a particular group’s character size must all have
the same size.

The constraints requiring each Clip to have a nonzero length and each Image to
have nonzero width and height are present due to a Pygame limitation: Pygame
refuses to create zero-length sounds or zero-sized images. Were it not for this
limitation, they would be unnecessary — it would be logical for playing a zero-
length clip or pasting a zero-sized image to have no effect.

3. Pthin 19

Chapter 3

Pthin

Though the implementation of Pvote is developed, tested, and demonstrated on
the open-source Python interpreter (versions 2.3, 2.4, and 2.5), it only uses a small
subset of the Python language. To limit the scope of the review and to save the
reviewers from having to read the entire Python reference manual, this section
defines “Pthin”, a subset of Python sufficient to run Pvote. Differences between
the Pthin specification and the behaviour of the Python interpreter are out of scope
for this review.

3.1 Types

Values in Pthin are typed, but variables are not. There is a unique special value
called None whose only supported operation is comparison to None. Aside from
None, there are six types of values in Pthin: integers, strings, lists, functions,
classes, and objects.

Integers are signed and unlimited in size. Integer literals are written in decimal.
Strings are variable-length arrays of 8-bit bytes. String literals are written

exactly as in C. Null bytes have no special significance.
Lists are variable-length arrays of Pthin values. Lists can be heterogeneous

and can contain values of any type as elements. List literals are written in square
brackets with elements separated by commas.

Functions may take any number of arguments and always return one value.
Functions are defined with the def keyword (see Section 3.4 for more on functions).

Classes contain method definitions and can be invoked to instantiate objects.
Classes are defined with the class keyword (see Section 3.5 for more on classes).

Objects are instances of classes. Each object contains its own public namespace,
accessed with a dot. For example, if x is an object, then x.foo = 3 binds foo
to 3 in the namespace belonging to x . An object’s methods are simply functions
residing in its namespace (see Section 3.5 for more on methods).

Table 1 is a summary of expressions involving these types. When the arguments
to an operation are of unacceptable types, a fatal runtime error occurs.

Assignment binds a name to a reference, lists and object namespaces contain
references, and arguments are passed by reference. (This works like Scheme or
Java with objects only: all values are boxed, even integers.)

3. Pthin 20

Expression Preconditions Definition
(expr) evaluate expr
None literal for the special value None
123 integer literal
"abc" string literal
[expr1, expr2, ...] list literal
[expr for name in l] evaluate expr with name bound to each element of l
f(arg1, ...) arguments match f ’s arity call a function
c(arg1, ...) arguments match c ’s arity create an object that is an instance of c
o. field field is bound in o’s namespace access a field in the object o’s namespace
s[i:j] 0 ≤ i ≤ j < length of s get a substring (skip first i bytes, get next j - i bytes)
l[i] 0 ≤ i < length of l get the element of l at index i (counting starts at zero)
i * j multiply
i / j j 6= 0 divide and round down
i % j j 6= 0 i - j*(i/j)
s * i i ≥ 0 concatenate i copies of s to make a new string
i + j add
i - j subtract
l + m concatenate two lists to make a new list
s + t concatenate two strings to make a new string
Comparison operators can be chained (e. g. 10 <= x < 20). The result is the conjunction of all the comparisons.
i == j 1 if i = j ; 0 otherwise
i != j 1 if i 6= j ; 0 otherwise
i == None 1 if i is None; 0 otherwise
i != None 1 if i is not None; 0 otherwise
i < j 1 if i < j ; 0 otherwise
i > j 1 if i > j ; 0 otherwise
i <= j 1 if i ≤ j ; 0 otherwise
i >= j 1 if i ≥ j ; 0 otherwise
s == t 1 if s and t are identical strings; 0 otherwise
s != t 1 if s and t are different strings; 0 otherwise
i in l 1 if i is an element of l ; 0 otherwise
i not in l 1 if i is not an element of l ; 0 otherwise
not i 1 if i is zero; 0 otherwise
i and j 1 if i and j are both nonzero; 0 otherwise
i or j 1 if i or j or both are nonzero; 0 otherwise

Table 3.1: Expression syntax, with operators grouped by precedence (highest at the
top). The above expressions are only legal with the types of operands indicated: i
and j are integers, s and t are strings, l and mare lists, f is a function, c is a class,
o is an object, and x is a value of any type. If operands of unacceptable types are
used in these expressions or a precondition is violated, a fatal error occurs.

3. Pthin 21

3.2 Namespaces

Bindings are created by assignment statements, the for statement, function
definitions, and class definitions. Bindings can exist in three types of namespaces:
global namespaces, local namespaces, and object namespaces.

Each Pthin file has one global namespace. Whenever a function is invoked, a
new local namespace is created for the execution frame, and it lasts until the frame
is exited.

Pthin has lexical scoping with just two levels. When names are bound outside
of a function, the binding is created in the global namespace. When names are
bound inside of a function, the binding is created in the local namespace.

Within a function, names can refer to bindings in the global or local namespace.
A name refers to a local binding if a binding to that name exists anywhere within
the function definition. Otherwise, the name refers to a global binding.

Every object has its own public object namespace. Object namespaces are
always accessed explicitly using the dot operator on the object.

3.3 Statements

Many kinds of statements contain blocks of code that are syntactically delimited
by indentation. A block is introduced with a colon at the end of a line. The body
of the block is indented with respect to its introducing line, and ends when the
indentation level returns to match the indentation of the introducing line.

The assert statement evaluates an integer-valued expression and causes a
fatal runtime error if the value is zero.

The print statement sends a string to the printer.
An if statement takes the form if condition: followed by an indented block.

The condition must evaluate to an integer. The block is executed if the condition is
nonzero. This can be optionally followed by else: (indented to match its if) and
another indented block to be executed if the condition is zero.

A while loop takes the form while condition: followed by an indented block.
The condition must evaluate to an integer. Just as in C, the block is repeatedly
evaluated as long as the condition is nonzero.

A for loop takes the form for name in expr: followed by an indented block.
The expression expr must evaluate to a list. The for loop binds name to each
element of the list in turn, executing the body once for each element.

The import statement imports Pthin modules and makes them available in the
current namespace. A Pthin module is just a text file containing Pthin code, with
a filename ending in .py . The statement import name creates a new object to
represent the module and executes name.py using that object’s namespace as the
global namespace. That is, all the global bindings in the file appear as bindings in
the module object’s namespace. The module object is then bound to name. If the
module has already been imported, it is not executed again; name is bound to the
already existing module object.

See Table 3.2 for a summary of these statement types.

3. Pthin 22

Statement Preconditions Definition
name = x create or replace a binding in the current namespace
o. field = x create or replace a binding in the object o’s namespace
l[i] = x 0 ≤ i < length of l set the element of l at index i to x
[lvalue1, ..., lvaluen] = l n = length of l assign to multiple lvalues (names, fields, or list items)
assert i cause a fatal runtime error if i is zero
print s send s and a newline to the printer
if i: if i is nonzero, execute the first block

block
else: otherwise execute the second block

block
while i: execute block repeatedly as long as i is nonzero

block
for lvalue in l: for each element of l , assign it to lvalue and execute block

block
import name1, name2, ... import the modules name1, name2, ... from the files

name1.py , name2.py , ... respectively
def name(param1, param2, ...): create a function with parameters param1, param2, ...

block
return expr exit a function, returning expr as the result
class name: create a class with the given methods

def method(param1, param2, ...):
block

...

Table 3.2: Statements in Pthin. These are only legal with the types indicated: i is
an integer, s is a string, l is a list, o is an object, and x is a value of any type. If an
unacceptable type is supplied or a precondition is violated, a fatal error occurs.

3.4 Functions

A function is defined with the def keyword followed by the name of the function,
a pair of parentheses surrounding a comma-separated list of parameter names,
and a colon. The body of the function is an indented block. Executing a function
definition binds the name to the newly created function. Here’s an example:

def factorial(n):
if n == 0 or n == 1:

return 1
return n * factorial(n - 1)

Calling a function creates a new local namespace in which the parameter names
are bound to the arguments passed in. If the number of arguments does not match
the number of parameters, a fatal runtime error occurs.

Within the body of a function, return expr exits the function with a return
value. If no return statement is executed, the function returns None.

3. Pthin 23

3.5 Classes and objects

A class is defined with the class keyword followed by the name of the class and
a colon, then an indented block containing a series of method definitions. Each
method definition is a function definition with at least one parameter. Since the
object itself is always passed into a method as the first argument, the first parameter
is conventionally named self .

Invoking a class creates a new object belonging to the class. The new object’s
namespace acquires a binding for each method in the class. Each method definition
with n parameters in the class yields a function of the same name with n − 1
parameters in the object’s namespace. Invoking this function with some arguments
is equivalent to invoking the corresponding method with one extra argument, the
object itself, prepended to the given argument list.

Immediately after the object is created, the function named __init__ in its
namespace is invoked with the arguments passed into the invocation of the class.

Here’s an example of a simple class definition:

class Counter:
def __init__(self, n):

self.count = count
def next(self):

self.count = self.count + 1
return self.count

c = Counter(5) would create a new Counter object with c.count initially
bound to 5. Invoking c.next() would increment c.count to 6 and return 6.

3.6 Built-in functions and methods

The functions in Table 3.3 are available from any scope.

Expression Result Preconditions Definition
range(i) list i ≥ 0 make a list of the i integers from 0 to i - 1
chr(i) string 0 ≤ i ≤ 255 convert i to a one-byte string
ord(s) integer len(s) = 1 convert the first byte of s to an integer
len(s) integer get the number of bytes in s
list(s) list break s into a list of one-byte strings
len(l) integer get the number of elements in l
enumerate(l) list make a list of pairs [i, x] for each element x and its index i
l.append(x) None append x as one more element at the end of l
l.remove(i) None i is an element of l find and remove the first element that equals i from l
l.pop() any l is not empty remove and return the last element from l
open(s) object a file named s exists open a file for reading, yielding a readable stream object

and is readable

Table 3.3: Built-in functions and methods in Pthin. In these descriptions, i is an
integer, s is a string, l is a list, and x is a value of any type.

3. Pthin 24

3.7 Readable stream objects

The term “readable stream object” refers to any object with a read method that
takes a single integer argument, length , and returns a string of up to length
bytes. The underlying concept is that the object maintains a current position in a
finitely long data stream, and each invocation of read returns the next length
bytes from the data stream and advances the current position by length bytes in
preparation for the next read . If there are fewer than length bytes remaining to
be read, the result is a string containing whatever is left in the data stream; if the
end of the stream has been reached, the result is an empty string.

Opening a file with the built-in open function returns an object that provides
this protocol. Custom objects that provide this protocol can also be instantiated
from class definitions that implement an appropriate read method.

3.8 Memory management

Pthin dynamically allocates memory for data and for the stack. Each Pthin file (the
main program or any module being imported) is analyzed before it is executed.

3.8.1 Data

During the analysis phase, a Pthin file is scanned for literals. Memory is allocated
just once for literals; their values are created and kept in a pool of constants. During
execution, when an expression yields a value, memory is allocated for the value.

Every value has a reference count. The reference count is incremented when-
ever an assignment statement binds a global name, a local name, or a field of an
object to the value. The reference count is also incremented whenever a reference
to the value is placed in a list, either by assignment or the append method.

The reference count is decremented whenever a binding to the value is
replaced or a name bound to the value goes out of scope. The reference count
is also decremented whenever a reference to the value is removed from a list by
replacement or the remove or pop methods.

Arguments and returned values are passed to and from functions and methods
by pushing them onto an internal stack. Reference counts are also incremented and
decremented when values are pushed onto or popped off of this stack.

When decrementing the reference count causes the count to reach zero, the
memory for the value is deallocated. If the value is a list or object, the reference
counts of all its elements or fields are also decremented.

3.8.2 Stack

During the analysis phase, the entire file is scanned for global names, and enough
space is allocated to hold all of the global bindings. Then, every function and
method declaration is scanned for local names, and the amount of space needed
for each function or method’s local bindings is recorded.

Whenever a function or method is called, memory is allocated for a new stack
frame, which holds the local bindings and saves the parent execution context.
When the function or method returns, its stack frame is deallocated.

4. Pygame 25

Chapter 4

Pygame

Pvote uses the Pygame library for graphics, sound, and user input. This section
specifies the parts of Pygame that Pvote uses and their expected behaviour.

4.1 Events

A Pygame program is built around a main event loop that processes incoming
events one at a time. When events occur, Pygame adds them to an internal queue.
Each call to pygame.event.wait() waits until the queue is nonempty, then
removes and returns the first event from the queue. The returned event object
always has an integer field type specifying the kind of event, and may have other
fields for details of the event, depending on the type.

Function Preconditions Definition
pygame.event.wait()

Wait for the next event and return an event
object describing it.

pygame.time.set_timer(event, period)
event is an integer event type code greater
than or equal to pygame.USEREVENT= 24
and less than pygame.NUMEVENTS= 32.
period is an integer number of milliseconds.

Set the timer period for event type event to
period. If period > 0, an event of type event
will be placed on the queue in period ms and
again every period ms thereafter. Each event
type has its own timer. If period = 0, the
timer for event type event is disabled.

Event type value Definition
pygame.KEYDOWN(2) A key has been pressed. The integer key

code is given in the key field of the event
object.

pygame.MOUSEBUTTONDOWN(5) A mouse button has been pressed. The
coordinates of the mouse pointer are given
in the pos field of the event object, which is
a list of two integers.

Table 4.1: Pygame event operations and event types used by Pvote.

4. Pygame 26

4.2 Audio

Pygame provides a mixer facility for playing audio. The mixer can play many
sounds at once, though Pvote is designed specifically to avoid this capability.
Sound clips are represented by Sound objects that can be told to play() them-
selves. Each time a Sound starts playing, it is assigned to an available Channel ; the
mixer mixes all the channels together (by default, there are 8 channels). A channel
can be asked to trigger a notification event when its current sound clip finishes
playing.

Table 4.2 summarizes the Pygame functions and methods that Pvote uses to
implement audio playback.

Function Preconditions Definition
pygame.mixer.init(rate, format, stereo)

rate is a valid sample rate (11025, 22050, or
44100). format is 8 for unsigned 8-bit samples
or -16 for signed 16-bit samples. stereo is 0 for
mono or 1 for stereo.

Initialize the audio player with the given
sample rate (in samples per second), sample
format, and mono/stereo setting. Must be
called before any other audio operations.

pygame.mixer.stop()
Stop any currently playing sounds on all
channels. Any currently playing channels
that previously had an end event set with
set_endevent will immediately place
their end events on the event queue.

pygame.mixer.Sound(stream)
stream is a readable stream object (see
Section 3.7). When read, stream yields the
contents of a valid WAV file (see Section C).

Create a Sound object from the audio data in
the given WAV file.

Class Method
Preconditions Definition

Sound play()
Start playing this sound clip and return the
Channel on which the clip is playing.

Channel set_endevent(event)
event is an integer event code greater than or
equal to pygame.USEREVENT= 24 and less
than pygame.NUMEVENTS= 32.

Set the end event for this channel. Each
channel can have its own end event type.
If event > 0, then from now on, an event of
type event will be placed on the event queue
each time a sound clip stops playing on this
channel. The end event can be triggered by
playing to the end of the clip or by a call to
stop() . If event = 0, then the sending of
end events for this channel is turned off.

Table 4.2: Pygame audio operations used by Pvote.

4. Pygame 27

4.3 Video

All drawing takes place on frame buffers represented by Surface objects. Initializ-
ing the video system yields a Surface for the display. After drawing on the surface,
one must call the display’s update method to copy the changed contents of the
frame buffer to the visible display.

Pvote constructs its visual display entirely by pasting prerendered images onto
the screen. It needs to use only one drawing method, blit , for this purpose.

Table 4.3 summarizes the functions and methods that Pvote uses for visual
display.

Function Preconditions Definition
pygame.display.set_mode(size, flags)

size is a pair of integers [width, height] .
flags is an integer.

Initialize the video display with a resolution
of width × height pixels and return a Surface
object. If flags is pygame.FULLSCREEN, the
display fills the screen.

pygame.display.update()
Update the video display to reflect the
contents of its surface object. (Drawing
commands will alter the surface in memory,
but the contents are not placed on the
display until update is called.)

pygame.image.fromstring(data, size, "RGB")
size is a pair of integers [width, height] .
data is a string of width × height × 3 bytes.

Create an Image object from the pixel data
in data, which is ordered left to right, top to
bottom, and has 3 unsigned bytes per pixel
(red, green, and blue values respectively).

Class Method
Preconditions Definition

Surface blit(image, pos)
image is an Image object with size (width,
height). pos is a list of two integers [x, y] .
0 ≤ x < x + width ≤ width of surface.
0 ≤ y < y + height ≤ height of surface.

Paste an image onto this surface with its
top-left corner at the given (x, y) position.

Table 4.3: Pygame video operations used by Pvote.

5. SHA 28

Chapter 5

SHA

Pvote uses the Python SHA module to compute SHA-1 digests. After the module
has been imported with the statement import sha , calling sha.sha() creates
a new SHA hashing object. The SHA object supports progressively adding more
input data with the update method; at any point the digest method can be called
to obtain the digest of the data submitted to far.

Function Preconditions Definition
sha.sha() Create a new SHA object.

Class Method
Preconditions Definition

sha o.update(s)
s is a string. Append s to the data being hashed.

sha o.digest()
Return a 20-byte string with the SHA-1
digest of all the data sent to this object so far.

Table 5.1: SHA module operations used by Pvote.

6. Pvote 29

Chapter 6

Pvote

6.1 Design

Pvote consists of seven components:

• Main program and event loop (main): Responsible for loading the other
components and receiving and dispatching Pygame events.

• Ballot loader (Ballot.py): Responsible for deserializing the ballot
definition file and verifying its header and digest.

• Ballot verifier (verifier.py): Responsible for checking the validity of the
ballot definition according to the constraints described in Section 2.7.

• Navigator (Navigator.py): Responsible for keeping track of the user’s
selections and the current state of the user interface, and performing
selection, navigation, or audio feedback in response to user actions.

• Audio driver (Audio.py): Responsible for queueing and playing audio.
• Video driver (Video.py): Responsible for drawing the visual display.
• Printer driver (Printer.py): Responsible for printing the committed ballot.

When Pvote starts up, the ballot loader is invoked to deserialize the ballot
definition into memory, and then the verifier is invoked to check the ballot
definition. The purpose of the verifier is to ensure immediate termination on an
invalid ballot definition, so that a fatal error cannot be caused by an illegal type,
precondition violation, or assertion failure after a voting session has begun.

The remaining five components form the virtual machine (Figure 6.1) that
presents the voting user interface to the voter. Each component has limited
responsibilities, and there are limited data flows between components.

The navigator keeps track of the current page and state and the current
selections in each group. The navigator responds to three messages:

• touch (target_i) : Find the first operative binding for the current state or
page that matches the given target, and invoke it.

• press (key) : Find the first operative binding for the current state or page
that matches the given keypress, and invoke it.

• timeout () : Add the timeout_segments for the current state to the
play queue. Go to the page and state given by timeout_page_i and
timeout_state_i if timeout_page_i is not None.

6. Pvote 30

LEGEND

start playing

audio finished

audio data video data ballot model

navigatorvideo driver

event loop

display

touch sensor
x, y

printer

write(selections)

software
module

hardware
device

one-way data flow

print driver

touch(target_i)
press(key_i)

timeout()

headphones

keypad
key_i

audio driver

play(clip_i)
stop()

lo
ca

te
(x

, y
) target_i

goto(layout_i)
paste(sprite_i, slot_i)

text data

ne
xt

()
ballot definition

causal link

Figure 6.1: Block diagram of the virtual machine, which consists of the five software
modules in bold. The arguments clip i, layout i, sprite i, target i, key i, x, and y are
integers; selections is a list of lists of integers.

The navigator sends five messages to other modules:

• goto (layout_i) is sent to the video driver upon transition to a page. The
layout index is the same as the page index.

• paste (sprite_i, slot_i) is sent to the video driver to paste sprites into
slots as necessary for states, option areas, counter areas, and review areas.

• play (clip_i) is sent to the audio driver to queue a clip to be played on the
headphones.

• stop () is sent to the audio driver to stop the currently playing clip.
• write (selections) is sent to the printer to commit the user’s selections

by printing the ballot.

The audio driver maintains a queue of audio clips to be played. It responds to
two messages:

• play (clip_i) : If nothing is currently playing, immediately begin playing
the specified clip; otherwise queue the specified clip to be played. clip_i is
an index into the list of clips in the Audio part of the ballot definition.

• next () : If there are any clips waiting in the queue, start playing the next
one.

• stop () : Stop whatever is currently playing and clear the queue.

The audio driver also exposes a field named playing that the main loop can read
to determine whether a sound clip is currently being played. Whenever the audio
driver starts playing a clip, it also ensures that a notification event with event type
AUDIO_DONEwill occur when the clip finishes playing.

6. Pvote 31

The video driver maintains one piece of state, the index of the current layout.
It responds to three messages:

• goto (layout_i) : Copy the full-screen image for the given layout into the
video display’s frame buffer and set the current layout to layout_i .

• paste (sprite_i, slot_i) : Copy the given sprite into the frame buffer
at the position specified by slot slot_i in the current layout’s slot list.

• locate (x, y) : Find and return the index of the first target that contains
the given point in the current layout’s list of targets, or None if the point does
not fall within any target.

The print driver maintains no state and responds to only one message:

• write (selections) : Print out the voter’s selections. selections is a
list of lists (one for each group). The sublists contain the integer indices of
selected options within each group.

The event loop receives four kinds of Pygame events:

• Keypresses (KEYDOWN): Upon receiving a keypress event, the event loop
notifies the navigator with a press message.

• Mouse clicks (MOUSEBUTTONDOWN): Upon receiving a touch event, the event
loop invokes locate on the video driver to translate the touch coordinates
into a target index, then passes this target index to the navigator in a touch
message.

• Audio notifications (AUDIO_DONE): Upon receiving notification that a sound
clip has finished playing, the event loop invokes next on the audio driver.

• Timer notifications (TIMER_DONE): Upon receiving notification that the timer
has expired, if no sound clip is currently playing, the event loop sends
timeout to the navigator to indicate that the ballot’s specified timeout has
passed with no activity.

The event loop also reschedules a TIMER_DONEevent for timeout_ms
milliseconds in the future every time it receives any event.

The audio driver, video driver, and printer driver are passive components: they
only respond to received messages and initiate no messages of their own.

6.2 Source Code

The following sections display a complete listing of the source code to Pvote, with
three columns of annotations on the left. The PRECONDITIONS column contains
assumptions and preconditions for each line, function, or method. The REASONS

FOR VALIDITY column explains why each line will not cause a fatal runtime error, or
marks potential causes of a fatal error with the symbol N! . The POSTCONDITIONS

column identifies what is expected to be true after a line, function, or method has
completed execution. The preconditions and postconditions for each function or
method are given on the first line (the def line) to facilitate modular reasoning.

Assumptions and postconditions of other lines are cited as evidence. Small
numbers in parentheses (123) refer to lines in the current file, and lines in other files
are cited with the filename and a colon, as in (Navigator:123).

PRECONDITIONS REASONS FOR VALIDITY POSTCONDITIONS
1

2 pygame.USEREVENTis an int. AUDIO_DONEis an int.
3 pygame.USEREVENTis an int. TIMER_DONEis an int.

4 A file named ballot exists. open() returns a readable stream object. ballot is a Ballot object.
5 ballot is a Ballot object (4). ballot is valid (verifier:1).
6 ballot.audio is a Ballot.Audio object (4, Ballot:8). audio is an Audio.Audio .
7 ballot.video is a Ballot.Video object (4, Ballot:9). video is a Video.Video .
8 ballot.text is a Ballot.Text object (4, Ballot:7). printer is a Printer .
9 ballot.model is a Ballot.Model (4, Ballot:6). audio is an Audio.Audio (6).

video is a Video.Video (7). printer is a Printer (8).
navigator is a Navigator .

10

11

12 TIMER_DONEis an int (3). ballot is a Ballot (4) ⇒
ballot.model.timeout_ms is an int (Ballot:6, Ballot:19).13 event is a pygame.Event .

14

15 pygame.KEYDOWNis an int. event is an Event (13) ⇒ event.type exists and is an int.
16 navigator is a Navigator (9). event is a keypress (15) ⇒ event.key

exists and is an int.

17 pygame.MOUSEBUTTONDOWNis an int. event is an Event (13) ⇒ event.type exists and is an int.
18 event is a mouse click (17) ⇒ event.pos exists and is a list of two ints. x and y are ints.
19 video is a Video.Video (7). x and y are ints (18). target_i is an int or None (Video:18).
20

21 navigator is a Navigator (9). target_i is an int (19, 20).
22 AUDIO_DONEis an int (2). event is an Event (13)⇒ event.type is an int.
23 audio is an Audio.Audio (6).
24 TIMER_DONEis an int (3). event is an Event (13)⇒ event.type is an int.
25 navigator is a Navigator (9).

6. Pvote 32

6.2.1 main.py

1 import Ballot, verifier, Audio, Video, Printer, Navigator, pygame

2 AUDIO_DONE = pygame.USEREVENT
3 TIMER_DONE = pygame.USEREVENT + 1

4 ballot = Ballot.Ballot(open("ballot"))
5 verifier.verify(ballot)
6 audio = Audio.Audio(ballot.audio)
7 video = Video.Video(ballot.video)
8 printer = Printer.Printer(ballot.text)
9 navigator = Navigator.Navigator(ballot.model, audio, video, printer)

10 while 1:
11 pygame.display.update()
12 pygame.time.set_timer(TIMER_DONE, ballot.model.timeout_ms)
13 event = pygame.event.wait()
14 pygame.time.set_timer(TIMER_DONE, 0)

15 if event.type == pygame.KEYDOWN:
16 navigator.press(event.key)

17 if event.type == pygame.MOUSEBUTTONDOWN:
18 [x, y] = event.pos
19 target_i = video.locate(x, y)
20 if target_i != None:
21 navigator.touch(target_i)
22 if event.type == AUDIO_DONE:
23 audio.next()
24 if event.type == TIMER_DONE and not audio.playing:
25 navigator.timeout()

PRECONDITIONS REASONS FOR VALIDITY POSTCONDITIONS
1 sha is bound to the SHA module.

2

3 stream is a readable stream. The ballot definition file is complete and the types of its fields are
valid, or N! .4 stream is a stream (3). N! if file header not present.

5 sha is the SHA module (1) ⇒ sha.sha is a function. self.stream is a readable stream (3). self.sha is a sha object.
6 self is a readable stream (11). self.model is a Ballot.Model .
7 self is a readable stream (11). self.text is a Ballot.Text .
8 self is a readable stream (11). self.audio is a Ballot.Audio .
9 self is a readable stream (11). self.video is a Ballot.Video .

10 self.sha is a sha (5). N! if hash does not match. The ballot definition file is complete and the loaded ballot definition
data matches its concluding hash.

11 length is an int. Returns the next length bytes of the stream (12, 14).
12 self.stream is a stream (5). length is an int (11). self.stream is a stream (5), so data is a string.
13 self.sha is a sha (5). data is a string (12).
14

15

16 stream is a readable stream.
17 stream is a stream (16). Group is a class (20). self.groups is a list of Group (136).
18 stream is a stream (16). Page is a class (31). self.pages is a list of Page (136).
19 stream is a stream (16). allow_none = 0, so self.timeout_ms is an int (122).

20

21 stream is a readable stream.
22 stream is a stream (21). allow_none = 0, so self.max_sels is an int (122).
23 stream is a stream (21). allow_none = 0, so self.max_chars is an int (122).
24 stream is a stream (21). allow_none = 0, so self.option_clips is an int (122).
25 stream is a stream (21). Option is a class (31). self.options is a list of Option (136).

26

27 stream is a readable stream.
28 stream is a stream (27). self.sprite_i is an int (122).
29 stream is a stream (27). self.clip_i is an int (122).
30 stream is a stream (27). allow_none = 1, so self.writein_group_i is int or None (122).

31

32 stream is a readable stream.
33 stream is a stream (32). Binding is a class (58). self.bindings is a list of Binding (136).
34 stream is a stream (32). State is a class (38). self.states is a list of State (136).
35 stream is a stream (32). OptionArea is a class (46). self.option_areas is a list of OptionArea (136).
36 stream is a stream (32). CounterArea is a class (50). self.counter_areas is a list of CounterArea (136).
37 stream is a stream (32). ReviewArea is a class (54). self.review_areas is a list of ReviewArea (136).

38

39 stream is a readable stream.
40 stream is a stream (39). allow_none = 0, so self.sprite_i is an int (122).
41 stream is a stream (39). Segment is a class (78). self.segments is a list of Segment (136).
42 stream is a stream (39). Binding is a class (58). self.bindings is a list of Binding (136).
43 stream is a stream (39). Segment is a class (78). self.timeout_segments is a list of Segment (136).
44 stream is a stream (39). allow_none = 1, so self.timeout_page_i is int or None (122).
45 stream is a stream (39). allow_none = 0, so self.timeout_state_i is an int (122).

6. Pvote 33

6.2.2 Ballot.py

1 import sha

2 class Ballot:
3 def __init__(self, stream):
4 assert stream.read(8) == "Pvote\x00\x01\x00"
5 [self.stream, self.sha] = [stream, sha.sha()]
6 self.model = Model(self)
7 self.text = Text(self)
8 self.audio = Audio(self)
9 self.video = Video(self)

10 assert self.sha.digest() == stream.read(20)

11 def read(self, length):
12 data = self.stream.read(length)
13 self.sha.update(data)
14 return data

15 class Model:
16 def __init__(self, stream):
17 self.groups = get_list(stream, Group)
18 self.pages = get_list(stream, Page)
19 self.timeout_ms = get_int(stream, 0)

20 class Group:
21 def __init__(self, stream):
22 self.max_sels = get_int(stream, 0)
23 self.max_chars = get_int(stream, 0)
24 self.option_clips = get_int(stream, 0)
25 self.options = get_list(stream, Option)

26 class Option:
27 def __init__(self, stream):
28 self.sprite_i = get_int(stream, 0)
29 self.clip_i = get_int(stream, 0)
30 self.writein_group_i = get_int(stream, 1)

31 class Page:
32 def __init__(self, stream):
33 self.bindings = get_list(stream, Binding)
34 self.states = get_list(stream, State)
35 self.option_areas = get_list(stream, OptionArea)
36 self.counter_areas = get_list(stream, CounterArea)
37 self.review_areas = get_list(stream, ReviewArea)

38 class State:
39 def __init__(self, stream):
40 self.sprite_i = get_int(stream, 0)
41 self.segments = get_list(stream, Segment)
42 self.bindings = get_list(stream, Binding)
43 self.timeout_segments = get_list(stream, Segment)
44 self.timeout_page_i = get_int(stream, 1)
45 self.timeout_state_i = get_int(stream, 0)

PRECONDITIONS REASONS FOR VALIDITY POSTCONDITIONS
46

47 stream is a readable stream.
48 stream is a stream (47). allow_none = 0, so self.group_i is an int (122).
49 stream is a stream (47). allow_none = 0, so self.option_i is an int (122).

50

51 stream is a readable stream.
52 stream is a stream (51). allow_none = 0, so self.group_i is an int (122).
53 stream is a stream (51). allow_none = 0, so self.sprite_i is an int (122).

54

55 stream is a readable stream.
56 stream is a stream (55). allow_none = 0, so self.group_i is an int (122).
57 stream is a stream (55). allow_none = 1, so self.cursor_sprite_i is int or None (122).

58

59 stream is a readable stream.
60 stream is a stream (59). allow_none = 1, so self.key is int or None (122).
61 stream is a stream (59). allow_none = 1, so self.target_i is int or None (122).
62 stream is a stream (59). Condition is a class (67). self.conditions is a list of Condition (136).
63 stream is a stream (59). Step is a class (73). self.steps is a list of Step (136).
64 stream is a stream (59). Segment is a class (78). self.segments is a list of Segment (136).
65 stream is a stream (59). allow_none = 1, so self.next_page_i is int or None (122).
66 stream is a stream (59). allow_none = 0, so self.next_state_i is an int (122).

67

68 stream is a readable stream.
69 stream is a stream (68). self.predicate is 0, 1, or 2 (127).
70 stream is a stream (68). allow_none = 1, so self.group_i is int or None (122).
71 stream is a stream (68). allow_none = 0, so self.option_i is an int (122).
72 stream is a stream (68). self.invert is 0 or 1 (127).

73

74 stream is a readable stream.
75 stream is a stream (74). self.op is 0, 1, 2, 3, or 4 (127).
76 stream is a stream (74). allow_none = 1, so self.group_i is int or None (122).
77 stream is a stream (74). allow_none = 0, so self.option_i is an int (122).

78

79 stream is a readable stream.
80 stream is a stream (79). Condition is a class (67). self.conditions is a list of Condition (136).
81 stream is a stream (79). self.type is 0, 1, 2, 3, or 4 (127).
82 stream is a stream (79). allow_none = 0, so self.clip_i is an int (122).
83 stream is a stream (79). allow_none = 1, so self.group_i is int or None (122).
84 stream is a stream (79). allow_none = 0, so self.option_i is an int (122).

6. Pvote 34

Ballot.py (page 2 of 4)

46 class OptionArea:
47 def __init__(self, stream):
48 self.group_i = get_int(stream, 0)
49 self.option_i = get_int(stream, 0)

50 class CounterArea:
51 def __init__(self, stream):
52 self.group_i = get_int(stream, 0)
53 self.sprite_i = get_int(stream, 0)

54 class ReviewArea:
55 def __init__(self, stream):
56 self.group_i = get_int(stream, 0)
57 self.cursor_sprite_i = get_int(stream, 1)

58 class Binding:
59 def __init__(self, stream):
60 self.key = get_int(stream, 1)
61 self.target_i = get_int(stream, 1)
62 self.conditions = get_list(stream, Condition)
63 self.steps = get_list(stream, Step)
64 self.segments = get_list(stream, Segment)
65 self.next_page_i = get_int(stream, 1)
66 self.next_state_i = get_int(stream, 0)

67 class Condition:
68 def __init__(self, stream):
69 self.predicate = get_enum(stream, 3)
70 self.group_i = get_int(stream, 1)
71 self.option_i = get_int(stream, 0)
72 self.invert = get_enum(stream, 2)

73 class Step:
74 def __init__(self, stream):
75 self.op = get_enum(stream, 5)
76 self.group_i = get_int(stream, 1)
77 self.option_i = get_int(stream, 0)

78 class Segment:
79 def __init__(self, stream):
80 self.conditions = get_list(stream, Condition)
81 self.type = get_enum(stream, 5)
82 self.clip_i = get_int(stream, 0)
83 self.group_i = get_int(stream, 1)
84 self.option_i = get_int(stream, 0)

PRECONDITIONS REASONS FOR VALIDITY POSTCONDITIONS
85

86 stream is a readable stream.
87 stream is a stream (87). TextGroup is a class (88). self.groups is a list of TextGroup (136).

88

89 stream is a readable stream.
90 stream is a stream (89). self.name is a string (131).
91 stream is a stream (89). self.writein is 0 or 1 (127).
92 stream is a stream (89). get_str is a function (131). self.options is a list of strings (136, 131).

93

94 stream is a readable stream.
95 stream is a stream (94). allow_none = 0, so self.sample_rate is an int (122).
96 stream is a stream (94). Clip is a class (97). self.clips is a list of Clip (136).

97

98 stream is a readable stream.
99 stream is a stream (98). allow_none = 0, so

get_int returns an int (122).
stream is a stream (98), so self.samples is a string.

100

101 stream is a readable stream.
102 stream is a stream (101). allow_none = 0, so self.width is an int (122).
103 stream is a stream (101). allow_none = 0, so self.height is an int (122).
104 stream is a stream (101). Layout is a class (106). self.layouts is a list of Layout (136).
105 stream is a stream (101). Image is a class (111). self.sprites is a list of Image (136).

106

107 stream is a readable stream.
108 Image is a class (111). stream is a stream (107). self.screen is a Image .
109 stream is a stream (107). Rect is a class (116). self.targets is a list of Rect (136).
110 stream is a stream (107). Rect is a class (116). self.slots is a list of Rect (136).

111

112 stream is a readable stream.
113 stream is a stream (112). allow_none = 0, so self.width is an int (122).
114 stream is a stream (112). allow_none = 0, so self.height is an int (122).
115 stream is a stream (112). self.width is an int (113).

self.height is an int (114).
stream is a stream (112), so self.pixels is a string.

116

117 stream is a readable stream.
118 stream is a stream (117). allow_none = 0, so self.left is an int (122).
119 stream is a stream (117). allow_none = 0, so self.top is an int (122).
120 stream is a stream (117). allow_none = 0, so self.width is an int (122).
121 stream is a stream (117). allow_none = 0, so self.height is an int (122).

6. Pvote 35

Ballot.py (page 3 of 4)

85 class Text:
86 def __init__(self, stream):
87 self.groups = get_list(stream, TextGroup)

88 class TextGroup:
89 def __init__(self, stream):
90 self.name = get_str(stream)
91 self.writein = get_enum(stream, 2)
92 self.options = get_list(stream, get_str)

93 class Audio:
94 def __init__(self, stream):
95 self.sample_rate = get_int(stream, 0)
96 self.clips = get_list(stream, Clip)

97 class Clip:
98 def __init__(self, stream):
99 self.samples = stream.read(get_int(stream, 0)*2)

100 class Video:
101 def __init__(self, stream):
102 self.width = get_int(stream, 0)
103 self.height = get_int(stream, 0)
104 self.layouts = get_list(stream, Layout)
105 self.sprites = get_list(stream, Image)

106 class Layout:
107 def __init__(self, stream):
108 self.screen = Image(stream)
109 self.targets = get_list(stream, Rect)
110 self.slots = get_list(stream, Rect)

111 class Image:
112 def __init__(self, stream):
113 self.width = get_int(stream, 0)
114 self.height = get_int(stream, 0)
115 self.pixels = stream.read(self.width*self.height*3)

116 class Rect:
117 def __init__(self, stream):
118 self.left = get_int(stream, 0)
119 self.top = get_int(stream, 0)
120 self.width = get_int(stream, 0)
121 self.height = get_int(stream, 0)

PRECONDITIONS REASONS FOR VALIDITY POSTCONDITIONS
122 stream is a stream.

allow_none is 0 or 1.
Returns an int if allow_none = 0 (125, 126); otherwise returns an int

or None (126). N! if the next 4 bytes read do not represent an int or
None, or if they represent None but allow_none = 0.

123 stream is a stream (122). N! if read returns less than 4
bytes. list returns a list of 4 length-1 strings.

a, b, c , d are 1-byte strings.

124

125 a, b, c , d are 1-byte strings (126). An int from 0 to 2147483647 is returned.
126 allow_none is an int (122). a, b, c , d are strings (126). None can be returned only if allow_none 6= 0.

127 stream is a stream.
cardinality is an int.

Returns an int n where 0 ≤ n < cardinality (129, 130). N! if the
next 4 bytes read do not represent an int in this range.

128 stream is a stream (127). allow_none = 0, so value is an int (122).
129 N! if value is out of range.
130 An int is returned.

131 stream is a stream. Returns a string containing only bytes between 32 and 125 inclusive
(133–135). N! if the stream does not yield a valid string.

132 stream is a stream (131). allow_none = 0 ⇒
get_int returns an int (122).

str is a string.
133 ch is a 1-byte string.
134 N! if any byte in str falls outside the range from 32

to 125 inclusive.135 A string is returned.

136 stream is a stream. Returns a list of instances of Class (124).
137 stream is a stream (136). allow_none = 0 ⇒

get_int returns an int (122).

6. Pvote 36

Ballot.py (page 4 of 4)

122 def get_int(stream, allow_none):

123 [a, b, c, d] = list(stream.read(4))

124 if ord(a) < 128:
125 return ord(a)*16777216 + ord(b)*65536 + ord(c)*256 + ord(d)
126 assert allow_none and a + b + c + d == "\xff\xff\xff\xff"

127 def get_enum(stream, cardinality):

128 value = get_int(stream, 0)
129 assert value < cardinality
130 return value

131 def get_str(stream):

132 str = stream.read(get_int(stream, 0))
133 for ch in list(str):
134 assert 32 <= ord(ch) <= 125
135 return str

136 def get_list(stream, Class):
137 return [Class(stream) for i in range(get_int(stream, 0))]

PRECONDITIONS REASONS FOR VALIDITY POSTCONDITIONS
1 ballot is a Ballot . ballot satisfies the validity constraints in Section 2.7, or N! .
2 ballot.model is a Model (1, Ballot:6). ballot.video is a

Video (1, Ballot:9).
groups is a list of Group (Ballot:17). sprites is a list of Image (Ballot:105).

3 option_sizes is a list of length(groups) empty lists.
4 char_sizes is a list of length(groups) empty lists.

5 model.groups is a list (1, Ballot:6, Ballot:17). text.groups is
a list (1, Ballot:7, Ballot:87). N! if assertion fails.

model.groups and text.groups have the same length > 0.

6 model.pages is a list (1, Ballot:6, Ballot:18). video.layouts
is a list (1, Ballot:9, Ballot:104). N! if assertion fails.

model.pages and video.layouts have the same length > 0.

7 model.pages is a list (1, Ballot:6, Ballot:18). page_i is a valid page index. page is the associated Page (Ballot:18).
8 page_i is a valid index in model.pages (7) ⇒ page_i is

a valid index in video.layouts (6).
layout is a Layout (Ballot:104).

9 page.bindings is a list (7, Ballot:33). binding is a Binding (Ballot:33).
10 ballot is a Ballot (1). page is a Page (7). binding is a

Binding (9).
binding is a valid Binding for this page (71).

11 page.states is a list (7, Ballot:34). N! if assertion fails. page.states is nonempty.

12 page.states is a list (Ballot:34). state_i is a valid state index. state is the associated State (Ballot:34).
13 N! if state.sprite_i is out of bounds. N! if state_i is

out of bounds. sprites is a list of Image (2).
layout.slots is a list of Rect (8, Ballot:110).

state.sprite_i is a valid index in video.sprites (2). state_i is a
valid index in layout.slots . The state’s sprite at state.sprite_i
has the same size as the state’s slot (95).

14 ballot is a Ballot (2). page is a Page (7). state.
segments is a list of Segment (12, Ballot:41).

Every element of state.segments is a valid Segment (78).

15 state.bindings is a list (Ballot:42). binding is a Binding (Ballot:42).
16 Ballot is a Ballot (2). page is a Page (7). binding is a

Binding (15).
binding is a valid Binding for this page (68).

17 ballot is a Ballot (2). page is a Page (7). state.
timeout_segments is a list of Segment (12, Ballot:43).

Every element of state.timeout_segments is a valid Segment (78).

18 ballot is a Ballot (2). timeout_page_i is an int or None
(Ballot:44). timeout_state_i is an int (Ballot:45).

Either timeout_page_i is None, or timeout_page_i and
timeout_state_i are a valid page and state index (75).

19 slot_i is the index of the first remaining slot after slots have been
assigned to states.

20 page.option_areas is a list (7, Ballot:35). area is an OptionArea (7, Ballot:35).
21 ballot is a Ballot (2). page is a Page (7). area is a

OptionArea (20).
area.group_i is an int (Ballot:48), so area.group_i is a valid group

index and area.option_i is a valid option index in that group (89).

22 option_sizes is a list of lists (3). area.group_i is a
valid group index (21). layout.slots is a list (Ballot:110).
N! if slot_i is out of bounds.

This page’s layout contains a slot for this option area. option_sizes for
this option area’s group contains this option area’s slot.

23 slot_i is an int (19, 23). slot_i is the index of the next available slot.

24 page.counter_areas is a list (7, Ballot:36). area is a CounterArea (7, Ballot:36).
25 N! if area.group_i is out of bounds. groups is a list of

Group (2) ⇒ groups[area.group_i].max_sels is
an int (Ballot:22).

area.group_i is a valid group index. i is an int from 0 to max_sels
inclusive.

26 area.sprite_i is an int (Ballot:53). N! if area.sprite_i
+ i is out of bounds. N! if slot_i is out of bounds.

This page’s layout contains a slot for this counter area. sprite_i
through sprite_i + max_sels are valid sprite indices. These sprites
all fit the counter area’s slot (95).

27 slot_i is an int (19, 23, 27). slot_i is the index of the next available slot.

6. Pvote 37

6.2.3 verifier.py

1 def verify(ballot):
2 [groups, sprites] = [ballot.model.groups, ballot.video.sprites]
3 option_sizes = [[] for group in groups]
4 char_sizes = [[] for group in groups]

5 assert len(ballot.model.groups) == len(ballot.text.groups) > 0

6 assert len(ballot.model.pages) == len(ballot.video.layouts) > 0

7 for [page_i, page] in enumerate(ballot.model.pages):
8 layout = ballot.video.layouts[page_i]

9 for binding in page.bindings:
10 verify_binding(ballot, page, binding)

11 assert len(page.states) > 0

12 for [state_i, state] in enumerate(page.states):
13 verify_size(sprites[state.sprite_i], layout.slots[state_i])

14 verify_segments(ballot, page, state.segments)

15 for binding in state.bindings:
16 verify_binding(ballot, page, binding)

17 verify_segments(ballot, page, state.timeout_segments)

18 verify_goto(ballot, state.timeout_page_i, state.timeout_state_i)

19 slot_i = len(page.states)

20 for area in page.option_areas:
21 verify_option_ref(ballot, page, area)

22 option_sizes[area.group_i].append(layout.slots[slot_i])

23 slot_i = slot_i + 1

24 for area in page.counter_areas:
25 for i in range(groups[area.group_i].max_sels + 1):

26 verify_size(sprites[area.sprite_i + i], layout.slots[slot_i])

27 slot_i = slot_i + 1

PRECONDITIONS REASONS FOR VALIDITY POSTCONDITIONS
28 page.review_areas is a list (7, Ballot:37). area is a ReviewArea (7, Ballot:37).
29 N! if area.group_i is out of bounds. groups is a list of

Group (2) ⇒ groups[area.group_i].max_sels is an
int (Ballot:22).

area.group_i is a valid group index. i is an int from 0 to
max_sels − 1 inclusive.

30 option_sizes is a list of lists (3). area.group_i is a valid
group index (29). N! if slot_i is out of bounds.

This page’s layout contains an option slot for this review area.
option_sizes for this review area’s group contains all of the
review area’s option slots.

31 slot_i is an int (19, 23, 27, 31). slot_i is the index of the next available slot.
32 area.group_i is a valid group index (29). groups is a list of

Group (2) ⇒ groups[area.group_i].max_chars is an
int (Ballot:23).

j is an int from 0 to max_chars − 1 inclusive.

33 char_sizes is a list of lists (4). area.group_i is a valid
group index (29). N! if slot_i is out of bounds.

This page’s layout contains enough character slots for this review area.
char_sizes for this review area’s group contains all of the review
area’s character slots.

34 slot_i is an int (19, 23, 27, 31, 34). slot_i is the index of the next available slot.
35 area.cursor_sprite_i is an int or None (Ballot:57).
36 option_sizes is a list of lists (3). area.group_i is a valid

group index (29). N! if area.cursor_sprite_i is out of
bounds.

area.cursor_sprite_i is None, or it is a valid sprite index and
option_sizes for this review area’s group contains the review
area’s cursor sprite.

37 groups is a list (2). group_i is a valid group index. group is the associated Group (2).
38 group.options is a list (37, Ballot:25). option is an Option (37, Ballot:25).
39 option_sizes is a list of lists (3). group_i is a valid group

index (37). N! if option.sprite_i is out of bounds.
option.sprite_i is a valid sprite index. option_sizes for this

group contains the option’s selected sprite.

40 option_sizes is a list of lists (3). group_i is a valid group
index (37). N! if option.sprite_i + 1 is out of bounds.

option.sprite_i + 1 is a valid sprite index. option_sizes for
this group contains the option’s unselected sprite.

41 group is a Group (37). N! if assertion fails. group.option_clips is at least 1.

42 audio.clips is a list (1, Ballot:8, Ballot:96). N! if option.clip_i
+ group.option_clips − 1 is out of bounds.

The integers option.clip_i through option.clip_i +
group.option_clips − 1 are all valid clip indices.

43 option is a Option (38).
44 groups is a list of Group (2). option is a Option (38). N! if

option.writein_group_i is out of bounds.
option.writein_group_i is None (43), or it is a valid group index

and writein_group is the associated Group .

45 writein_group is a Group (44). N! if assertion fails. max_chars = 0 for this option’s write-in group.
46 writein_group is a Group (44). group is a Group . N! if

assertion fails.
max_sels for this option’s write-in group matches max_chars for

this option’s parent group. group cannot be the write-in group for
any option (43–46).

47 writein_group.options is a list (44, Ballot:25). option is an Option (44, Ballot:25).
48 char_sizes is a list of lists (4). group_i is a valid group

index (37). N! if option.sprite_i is out of bounds.
After loop: all options in the write-in group have valid sprite indices.

char_sizes for the parent group contains all their sprites.

49 group_i is a valid group index (37).
option_sizes[group_i] is a list (3).

object is a Slot or a Sprite (22, 30, 36, 39, 40).

50 group_i is a valid group index (37). Each of object and
option_sizes[group_i][0] is a Slot or Sprite (49).

After loop: all the slots and sprites for options in this group have the
same size.

51 group_i is a valid group index (37). char_sizes[group_i]
is a list (3).

object is a Slot or a Sprite (33, 48).

52 group_i is a valid group index (37). Each of object and
char_sizes[group_i][0] is a Slot or Sprite (51).

After loop: all the slots and sprites for characters in write-in options in
this group have the same size.

6. Pvote 38

verifier.py (page 2 of 4)

28 for area in page.review_areas:
29 for i in range(groups[area.group_i].max_sels):

30 option_sizes[area.group_i].append(layout.slots[slot_i])

31 slot_i = slot_i + 1
32 for j in range(groups[area.group_i].max_chars):

33 char_sizes[area.group_i].append(layout.slots[slot_i])

34 slot_i = slot_i + 1
35 if area.cursor_sprite_i != None:
36 option_sizes[area.group_i].append(sprites[area.cursor_sprite_i])

37 for [group_i, group] in enumerate(groups):
38 for option in group.options:
39 option_sizes[group_i].append(sprites[option.sprite_i])

40 option_sizes[group_i].append(sprites[option.sprite_i + 1])

41 assert group.option_clips > 0

42 ballot.audio.clips[option.clip_i + group.option_clips - 1]

43 if option.writein_group_i != None:
44 writein_group = groups[option.writein_group_i]

45 assert writein_group.max_chars == 0
46 assert writein_group.max_sels == group.max_chars > 0

47 for option in writein_group.options:
48 char_sizes[group_i].append(sprites[option.sprite_i])

49 for object in option_sizes[group_i]:

50 verify_size(object, option_sizes[group_i][0])

51 for object in char_sizes[group_i]:

52 verify_size(object, char_sizes[group_i][0])

PRECONDITIONS REASONS FOR VALIDITY POSTCONDITIONS
53 text.groups is a list (1, Ballot:7, Ballot:87). Since text.groups and model.groups have the same length (5),

group_i is a valid group index and group is the associated
TextGroup (1, Ballot:7, Ballot:87).

54 N! if assertion fails. group.name is no more than 50 bytes long.
55 group_i is a valid group index (53). group.options is a list

(53, Ballot:92). groups[group_i].options is a list (Ballot:25).
N! if assertion fails.

This TextGroup group has the same number of options as its
corresponding Group in model.groups .

56 group.options is a list (53, Ballot:92). option is a string (53, Ballot:92).
57 N! if assertion fails. option is no more than 50 bytes long.

58 audio.clips is a list (1, Ballot:8, Ballot:96). clip is a Clip (1, Ballot:8, Ballot:96).
59 clip.samples is a string (60, Ballot:99). N! if assertion fails. clip has a nonempty string of samples .

60 video is a Video (1, Ballot:9) ⇒ width and height are ints
(Ballot:102, Ballot:103). N! if assertion fails.

video has a nonzero width and nonzero height .

61 video.layouts is a list (1, Ballot:9, Ballot:104). layout is a Layout (1, Ballot:9, Ballot:104).
62 layout.screen is an Image (61, Ballot:108). video is a Video

(1, Ballot:9).
layout.screen has the same size as video .

63 layout.targets is a list of Rect (61, Ballot:109).
layout.slots is a list of Rect (61, Ballot:110).

The sum of lists is a list of Rect , so rect is a Rect .

64 rect is a Rect (63). video is a Video (1, Ballot:8). rect does not extend beyond the right edge of the screen.
65 rect is a Rect (63). video is a Video (1, Ballot:8). rect does not extend beyond the bottom edge of the screen.
66 video.sprites is a list (1, Ballot:8, Ballot:105). sprite is an Image (1, Ballot:8, Ballot:105).
67 sprite is an Image . sprite has a nonzero width and height and the correct amount of

pixel data for an image with size width × height .

68 ballot is a Ballot .
page is a Page.
binding is a
Binding .

binding is a valid Binding , or N! .

69 binding.conditions is a list (68, Ballot:62). condition is a Condition (68, Ballot:62).
70 ballot is a Ballot (68). page is a Page (68). condition is a

Condition (69).
After loop: every element of binding.conditions is a valid

Condition .

71 binding.steps is a list (68, Ballot:63). step is a Step (68, Ballot:63).
72 ballot is a Ballot (68). page is a Page (68). step is a Step (71). step.group_i and step.option_i form a valid option reference.
73 ballot is a Ballot (68). page is a Page (68).

binding.segments is a list of Segment (68, Ballot:64).
All the segments in binding.segments are valid for this page (78).

74 ballot is a Ballot (68). binding.next_page_i is an int or
None (68, Ballot:65). binding.next_state_i is an int (68,

Ballot:66).

Either next_page_i is None, or next_page_i is a valid page index
and next_state_i is a valid state index for that page (75).

75 ballot is a Ballot .
page_i and
state_i are ints.

Either page_i is None (76), or page_i is a valid page index and
state_i is a valid state index for that page (77), or N! .76

77 model.pages is a list of Page (75, Ballot:6, Ballot:18). N! if page_i
is out of bounds. N! if state_i is out of bounds.

page_i is a valid page index and state_i is a valid state index for
that page.

78 ballot is a Ballot .
page is a Page.
segments is a
list of Segment .

Every segment in segments is a valid Segment .
79 segments is a list (78). segment is a Segment (78).
80 segment.conditions is a list (79, Ballot:80). condition is a Condition (79, Ballot:80).
81 ballot is a Ballot (78). page is a Page (78). condition is a

Condition (80).
After loop: every element of segment.conditions is a valid

Condition .

82 audio.clips is a list of Clip (1, Ballot:8, Ballot:96). segment.clip_i is a valid clip index.
83

84 ballot is a Ballot (78). page is a Page (78). segment is a
Segment (79).

The segment’s group_i and option_i form a valid option reference.
group is the referenced Group .85

86 segment.clip_i is an int (79, Ballot:82).
group.option_clips is an int (84, Ballot:24).

If type is 1 or 2, segment.clip_i is a valid option clip offset for the
referenced group (83, 85).87

88 audio.clips is a list (1, Ballot:8, Ballot:96). segment.clip_i is
an int (79, Ballot:82). group.max_sels is an int (84, Ballot:22).

If type is 3 or 4, segment.clip_i + max_sels is a valid clip index
for the referenced group (83, 87).

6. Pvote 39

verifier.py (page 3 of 4)

53 for [group_i, group] in enumerate(ballot.text.groups):

54 assert len(group.name) <= 50
55 assert len(group.options) == len(groups[group_i].options)

56 for option in group.options:
57 assert len(option) <= 50

58 for clip in ballot.audio.clips:
59 assert len(clip.samples) > 0

60 assert ballot.video.width*ballot.video.height > 0

61 for layout in ballot.video.layouts:
62 verify_size(layout.screen, ballot.video)

63 for rect in layout.targets + layout.slots:

64 assert rect.left + rect.width <= ballot.video.width
65 assert rect.top + rect.height <= ballot.video.height
66 for sprite in ballot.video.sprites:
67 assert len(sprite.pixels) == sprite.width*sprite.height*3 > 0

68 def verify_binding(ballot, page, binding):

69 for condition in binding.conditions:
70 verify_option_ref(ballot, page, condition)

71 for step in binding.steps:
72 verify_option_ref(ballot, page, step)
73 verify_segments(ballot, page, binding.segments)

74 verify_goto(ballot, binding.next_page_i, binding.next_state_i)

75 def verify_goto(ballot, page_i, state_i):
76 if page_i != None:
77 ballot.model.pages[page_i].states[state_i]

78 def verify_segments(ballot, page, segments):
79 for segment in segments:
80 for condition in segment.conditions:
81 verify_option_ref(ballot, page, condition)

82 ballot.audio.clips[segment.clip_i]
83 if segment.type in [1, 2, 3, 4]:
84 group = verify_option_ref(ballot, page, segment)
85 if segment.type in [1, 2]:
86 assert segment.clip_i < group.option_clips
87 if segment.type in [3, 4]:
88 ballot.audio.clips[segment.clip_i + group.max_sels]

PRECONDITIONS REASONS FOR VALIDITY POSTCONDITIONS
89 ballot is a Ballot . page is a

Page. object is an OptionArea ,
Condition , Step , or Segment .

object.group_i and object.option_i form a valid
direct or indirect option reference, or N! . Returns the
referenced Group (92, 94).

90

91 page.option_areas is a list of OptionArea (7,

Ballot:35). N! if object.option_i is out of bounds.
If group_i is None, then option_i is a valid option area

index for page . area is the associated OptionArea .

92 model.groups is a list (1, Ballot:6, Ballot:17). area is an
OptionArea (91). N! if group_i is out of bounds.

The referenced option area’s group is returned.

93 model.groups is a list (1, Ballot:6, Ballot:17). N! if
object.group_i is out of bounds.
groups[object.group_i].options is a list (25).
N! if object.option_i is out of bounds.

group_i is a valid group index and option_i is a valid
option index in that group.

94 model.groups is a list (1, Ballot:6, Ballot:17). group_i is a
valid group index (93).

The referenced group is returned.

95 a is a Video , Image , or Rect . b is a
Video , Image , or Rect .

a and b have equal width and equal height .
96 a.width and b.width are ints (95, Ballot:102, Ballot:113,

Ballot:120). a.height and b.height are ints (95,

Ballot:103, Ballot:114, Ballot:121).

6. Pvote 40

verifier.py (page 4 of 4)

89 def verify_option_ref(ballot, page, object):

90 if object.group_i == None:
91 area = page.option_areas[object.option_i]

92 return ballot.model.groups[area.group_i]

93 ballot.model.groups[object.group_i].options[object.option_i]

94 return ballot.model.groups[object.group_i]

95 def verify_size(a, b):
96 assert a.width == b.width and a.height == b.height

INVARIANTS INV1. OP_ADD= 0, OP_REMOVE= 1, OP_APPEND= 2, OP_POP= 3, OP_CLEAR= 4 (1).
INV2. SG_CLIP = 0, SG_OPTION= 1, SG_LIST_SELS = 2, SG_COUNT_SELS= 3, SG_MAX_SELS= 4 (2).
INV3. PR_GROUP_EMPTY= 0, PR_GROUP_FULL= 1, PR_OPTION_SELECTED= 2 (3).

In an initialized Navigator object:
INV4. self.model is a valid Model (6).
INV5. self.audio is an Audio.Audio (7).
INV6. self.video is a Video.Video (7).
INV7. self.printer is a Printer (7).
INV8. self.selections is a list of length(model.groups) lists (8).
INV9. self.selections[i] always contains at most model.groups[i].max_sels elements (8, 82, 83).
INV10. The elements of self.selections[i] are always valid indexes into model.groups[i].options (83).
INV11. self.page_i is a valid page index and self.page is the Page at self.model.pages[self.page_i] (16).
INV12. self.state_i is a valid state index in the page self.page and self.state is the State at

self.page.states[self.state_i] (17).

PRECONDITIONS REASONS FOR VALIDITY POSTCONDITIONS
1 INV1.
2 INV2.
3 INV3.

4

5 model is a valid Model . audio
is a Audio.Audio . video is a
Video.Video . printer is a
Printer.Printer .6 INV4.

7 INV5, INV6, INV7.
8 model.groups is a list (INV4, Ballot:17). INV8. self.selections is a list of

length(model.groups) empty lists.9

10 0 is a valid page index (verifier:6) and 0 is a valid state index in the page
(verifier:11).

11 Either page_i is None, or
page_i is a valid page index
and state_i is a valid state
index in that page.

If page_i 6= None, then self.page_i
and self.state_i are set to page_i
and state_i .

12 self.model.pages is a list (INV4, Ballot:18). page_i and state_i are a valid page
index and state index (12).13

14 INV7, INV8, INV9, INV10.
15 self.model.pages is a list (INV4, Ballot:18). page_i is a valid index into

self.model.pages (13).
INV11. self.page_i and self.page

are the current page.

16 self.page.states is a list (INV4, Ballot:18). state_i is a valid index into
self.page.states (13).

INV12. self.state_i and
self.state are the current state.

17 self.state.segments is a list of valid Segments (16, verifier:14).
18

19 The video display shows the current page
and state. The option areas, counter
areas, and review areas on the display
accurately reflect the current selections.

20 INV11 and model.pages and video.layouts have equal length (verifier:6)

⇒ self.page_i is a valid layout index.

21 The sprite at self.state.sprite_i is the same size as the slot at
self.state_i (verifier:13).

22 slot_i points to the next available slot
after the states’ slots.

23 self.page.option_areas is a list (INV11, Ballot:35). area is an OptionArea (INV11, Ballot:35).
24 area is an OptionArea (23). INV8. area.group_i is a valid group index

(verifier:21).
unselected is 0 if this option area’s

option is selected, else it is 1.

25 area.group_i is a valid group index (verifier:21).
26 area.group_i and area.option_i are a valid option reference (verifier:21).
27 unselected is 0 or 1 (24). slot_i is this option area’s slot index (22, 23, 28).

sprite_i and sprite_i + 1 are valid sprite indices (verifier:39–40). The
option area’s slot (verifier:22) and the sprite to be pasted (verifier:39–40) have the
same size (verifier:50).

The unselected or selected sprite for this
option is correctly displayed in this
option area.

28

6. Pvote 41

6.2.4 Navigator.py

1 [OP_ADD, OP_REMOVE, OP_APPEND, OP_POP, OP_CLEAR] = range(5)
2 [SG_CLIP, SG_OPTION, SG_LIST_SELS, SG_COUNT_SELS, SG_MAX_SELS] = range(5)
3 [PR_GROUP_EMPTY, PR_GROUP_FULL, PR_OPTION_SELECTED] = range(3)

4 class Navigator:
5 def __init__(self, model, audio, video, printer):

6 self.model = model
7 [self.audio, self.video, self.printer] = [audio, video, printer]
8 self.selections = [[] for group in model.groups]
9 self.page_i = None

10 self.goto(0, 0)

11 def goto(self, page_i, state_i):

12 if page_i != None and self.page_i != len(self.model.pages) - 1:
13 if page_i == len(self.model.pages) - 1:
14 self.printer.write(self.selections)
15 [self.page_i, self.page] = [page_i, self.model.pages[page_i]]

16 [self.state_i, self.state] = [state_i, self.page.states[state_i]]

17 self.play(self.state.segments)
18 self.update()

19 def update(self):
20 self.video.goto(self.page_i)

21 self.video.paste(self.state.sprite_i, self.state_i)

22 slot_i = len(self.page.states)

23 for area in self.page.option_areas:
24 unselected = area.option_i not in self.selections[area.group_i]

25 group = self.model.groups[area.group_i]
26 option = group.options[area.option_i]
27 self.video.paste(option.sprite_i + unselected, slot_i)
28 slot_i = slot_i + 1

PRECONDITIONS REASONS FOR VALIDITY POSTCONDITIONS
29 self.page.counter_areas is a list (INV11, Ballot:36). area is a CounterArea (INV11,

Ballot:36).

30 area is a CounterArea (29). INV8. area.group_i is a valid group index
(verifier:21).

By INV9, 0 ≤ count ≤ groups[
area.group_i].max_sels .

31 count is an int from 0 to max_sels . slot_i is this counter area’s slot
index (22, 23, 28, 29, 32). sprite_i + count is a valid sprite index (verifier:26).
The pasted sprite matches the size of the counter area’s slot (verifier:26).

The counter area displays the correct
sprite according to the number of
selections in its group.

32

33 self.page.review_areas is a list (INV11, Ballot:37). area is a ReviewArea (INV11, Ballot:37).
34 area.group_i is a valid group index (verifier:29). slot_i is this review

area’s first slot index (22, 23, 28, 29, 32, 33, 34). ∀ k ∈ {0, 1, . . . , max_sels − 1},
slot_i + k × (1 + max_chars) is the valid index of a slot with size
matching the group’s options’ sprites (verifier:30–34, verifier:39, verifier:49–50).
area.cursor_sprite_i is a valid sprite index or None (verifier:36).

The review area is properly populated
with options. slot_i is the first slot
after this review area’s slots.

35 group_i is a valid group index. ∀ k
∈ {0, 1, . . . , max_sels − 1},
slot_i + k × (1 + max_chars)
is the valid index of a slot with
size matching the group’s options’
sprites. cursor_sprite_i is
None or a valid sprite index.

The review area shows the selections in
its group, with write-in text for any
selected write-in options. Returns
slot_i + max_sels × (1 +
max_chars) (47).

36 group_i is a valid group index (35). group is the review area’s group.
37 group_i is a valid group index (35). selections is the group’s selections.
38 group.max_sels is an int (35, Ballot:22). i is an int from 0 to max_sels − 1.
39 i is an int (38). selections is a list (37).
40 i is a valid index into selections (39). selections[i] is a valid index

into group.options (36, 37, INV10).
option is a selected Option in group

group_i (Ballot:25).

41 option.sprite_i is a valid sprite index (verifier:39). slot_i is a valid slot
index referring to a slot of matching size (35, 40).

The review area shows the sprites for
the selected options in its group.42

43 writein_group_i is a valid group index (verifier:44, 42). That group has
max_chars = 0 (verifier:43, verifier:45) and max_sels = group.max_chars
(verifier:46). ∀ k ∈ {0, 1, . . . , group.max_chars − 1}, slot_i + 1 + k is
the valid index of a slot with size matching the write-in group’s options’
sprites (verifier:31–34, verifier:47–48, verifier:51–52).

The review area shows the write-in
characters for this selected option.

44

45 cursor_sprite_i is a valid sprite index (35, 44). The cursor sprite has the
same size as slot slot_i (verifier:30, verifier:36, verifier:50).46 slot_i is the first slot for the next

option in this review area.

47 slot_i + max_sels × (1 +
max_chars) is returned (38, 46).

48 key is an int. The operative binding, if any, for this
keypress is invoked. Returns None.

49 state.bindings is a list (INV12, Ballot:42). page.bindings is a list
(INV11, Ballot:33).

Since the lists contain only valid
Binding s (verifier:10, verifier:16),
binding is a valid Binding .

50 binding.key is an int (48, Ballot:60). binding.conditions is a list of
valid Condition s (49, Ballot:62, verifier:70).

51 binding is a valid Binding (49). If binding is operative, it is invoked.
Returns None (69).

52 target_i is an int. The operative binding, if any, for this
target is invoked. Returns None.

53 state.bindings is a list (INV12, Ballot:42). page.bindings is a list
(INV11, Ballot:33).

Since the lists contain only valid
Binding s (verifier:10, verifier:16),
binding is a valid Binding .

54 binding.target_i is an int (52, Ballot:61). binding.conditions is a list
of valid Condition s (53, Ballot:62, verifier:70).

55 binding is a valid Binding (53). If binding is operative, it is invoked.
Returns None (69).

6. Pvote 42

Navigator.py (page 2 of 4)

29 for area in self.page.counter_areas:

30 count = len(self.selections[area.group_i])

31 self.video.paste(area.sprite_i + count, slot_i)
32 slot_i = slot_i + 1

33 for area in self.page.review_areas:
34 slot_i = self.review(area.group_i, slot_i, area.cursor_sprite_i)

35 def review(self, group_i, slot_i, cursor_sprite_i):

36 group = self.model.groups[group_i]
37 selections = self.selections[group_i]
38 for i in range(group.max_sels):
39 if i < len(selections):
40 option = group.options[selections[i]]

41 self.video.paste(option.sprite_i, slot_i)
42 if option.writein_group_i != None:
43 self.review(option.writein_group_i, slot_i + 1, None)

44 if i == len(selections) and cursor_sprite_i != None:
45 self.video.paste(cursor_sprite_i, slot_i)
46 slot_i = slot_i + 1 + group.max_chars

47 return slot_i

48 def press(self, key):

49 for binding in self.state.bindings + self.page.bindings:

50 if key == binding.key and self.test(binding.conditions):

51 return self.invoke(binding)

52 def touch(self, target_i):

53 for binding in self.state.bindings + self.page.bindings:

54 if target_i == binding.target_i and self.test(binding.conditions):

55 return self.invoke(binding)

PRECONDITIONS REASONS FOR VALIDITY POSTCONDITIONS
56 conditions is a list of valid

Condition s.
Returns 1 if all the conditions are met,

otherwise 0 (67, 68).

57 conditions is a list (56). cond is a valid Condition (56).

58 cond is a valid Condition (57). group_i and option_i are a valid
group index and option index (116).

59 cond.predicate is 0, 1, or 2 (Ballot:69). PR_GROUP_EMPTYis 0 (INV3).
60 group_i is the valid index of a list in self.selections (58, INV8). result is 1 if the group is empty,

otherwise 0.61 cond.predicate is 0, 1, or 2 (Ballot:69). PR_GROUP_FULLis 1 (INV3).
62 group_i is a valid group index (58). max is an int (INV4, Ballot:17, Ballot:22).

63 group_i is the valid index of a list in self.selections (58, INV8). result is 1 if the group is full,
otherwise 0.64 cond.predicate is 0, 1, or 2 (Ballot:69). PR_OPTION_SELECTEDis 2 (INV3).

65 group_i is the valid index of a list in self.selections (58, INV8). result is 1 if the option is selected,
otherwise 0.66 cond.invert is 0 or 1 (Ballot:72).

67 0 is returned if any condition is not met.
68 1 is returned if no condition is not met.

69 binding is a valid Binding . binding is invoked. Returns None.
70 binding.steps is a list (69, Ballot:63). step is a Step (69, Ballot:63).
71 step is a Step (70).
72 INV5.
73 binding.segments is a list of valid Segment s (69, verifier:73).
74 Either next_page_i is None or next_page_i and next_state_i are a

valid page index and state index (69, verifier:74).

75 step is a Step . The step is executed. Returns None.
76 step is a Step (75) with a valid option reference (verifier:72). group_i and option_i are the group

and option referenced by step (116).

77 group_i is a valid group index (76). group is the step’s group.
78 group_i is a valid index into self.selections (76, INV8). selections is the group’s selections.
79 option_i is an int (76). selections is a list (78). selected is 1 if the referenced option

is selected, otherwise 0.

80 step.op is 0, 1, 2, 3, or 4 (Ballot:75). OP_ADDis 0 and OP_APPENDis 2 (INV1).
81 selections is a list (78). group.max_sels is an int (77, Ballot:22).
82 selections is a list (78). option_i is an int (76). option_i is added to the selections

for group_i .83 step.op is 0, 1, 2, 3, or 4 (Ballot:75). OP_REMOVEis 1 (INV1).
84 selections is a list (78). option_i is an int (76). option_i is removed from the

selections for group_i .

85 step.op is 0, 1, 2, 3, or 4 (Ballot:75). OP_POPis 3 (INV1).
86 selections is a non-empty list (78, 85). The last item is removed from this

group’s selections .87 step.op is 0, 1, 2, 3, or 4 (Ballot:75). OP_CLEARis 4 (INV1).
88 group_i is a valid index into self.selections (76, INV8). This group’s selections are cleared.

6. Pvote 43

Navigator.py (page 3 of 4)

56 def test(self, conditions):

57 for cond in conditions:

58 [group_i, option_i] = self.get_option(cond)

59 if cond.predicate == PR_GROUP_EMPTY:
60 result = len(self.selections[group_i]) == 0
61 if cond.predicate == PR_GROUP_FULL:
62 max = self.model.groups[group_i].max_sels

63 result = len(self.selections[group_i]) == max
64 if cond.predicate == PR_OPTION_SELECTED:
65 result = option_i in self.selections[group_i]
66 if cond.invert == result:
67 return 0
68 return 1

69 def invoke(self, binding):
70 for step in binding.steps:
71 self.execute(step)
72 self.audio.stop()
73 self.play(binding.segments)
74 self.goto(binding.next_page_i, binding.next_state_i)

75 def execute(self, step):
76 [group_i, option_i] = self.get_option(step)

77 group = self.model.groups[group_i]
78 selections = self.selections[group_i]
79 selected = option_i in selections

80 if step.op == OP_ADD and not selected or step.op == OP_APPEND:
81 if len(selections) < group.max_sels:
82 selections.append(option_i)
83 if step.op == OP_REMOVE and selected:
84 selections.remove(option_i)

85 if step.op == OP_POP and len(selections) > 0:
86 selections.pop()
87 if step.op == OP_CLEAR:
88 self.selections[group_i] = []

PRECONDITIONS REASONS FOR VALIDITY POSTCONDITIONS
89 The current state’s timeout segments

are played, if any, and its timeout
transition is taken, if any.

90 timeout_segments is a list of valid Segment s (INV12, Ballot:43, verifier:17).
91 Either timeout_page_i is None or timeout_page_i and

timeout_state_i are valid page and state indices (INV12, verifier:18).

92 segments is a list of valid
Segment s.

The sequence of segments is played.
93 segments is a list (92). segment is a valid Segment (92).
94 segment.conditions is a list of valid Condition s (93, Ballot:80, verifier:81).

self.test returns 0 or 1 (56).

95 segment.type is 0, 1, 2, 3, or 4 (Ballot:81). SG_CLIP is 0 (INV2).
96 segment.clip_i is a valid clip index (verifier:82).
97

98 segment is a valid Segment (93). group_i and option_i are a valid
group index and option index (116).

99 group_i is a valid group index (98). group is the segment’s group.
100 group_i is a valid group index (98). selections is the group’s selections.

101 segment.type is 0, 1, 2, 3, or 4 (Ballot:81). SG_OPTIONis 1 (INV2).
102 option_i is a valid option index (98). segment.clip_i <

group.option_clips (verifier:86).

103 segment.type is 0, 1, 2, 3, or 4 (Ballot:81). SG_LIST_SELS is 2 (INV2).
104 selections is a list (100). option_i is a valid option index in

group group_i (INV10, 100).105 option_i is a valid option index (104). segment.clip_i <
group.option_clips (verifier:86).

106 segment.type is 0, 1, 2, 3, or 4 (Ballot:81). SG_COUNT_SELSis 3 (INV2).
107 length(selections) ≤ max_sels (INV9) and segment.clip_i +

max_sels is a valid clip index (verifier:88) ⇒ segment.clip_i +
length(selections) is a valid clip index.

108 segment.type is 0, 1, 2, 3, or 4 (Ballot:81). SG_MAX_SELSis 4 (INV2).
109 segment.clip_i + max_sels is a valid clip index (verifier:88).

110 option is an Option . 0 ≤ offset
< group.option_clips for the
option’s group.

The clip for option at offset offset is
played; if it is a write-in option, the
clips for the selected character
options are also played, with offset 0.111 option.clip_i + group.option_clips − 1 is a valid clip index

(verifier:42) and offset < group.option_clips (110) ⇒
option.clip_i + offset is a valid clip index.

112

113 option.writein_group_i is a valid group index (verifier:44). writein_group is a Group (INV4,

Ballot:17).

114 option.writein_group_i is a valid index into self.selections
(verifier:44, INV8).

option_i is a valid option index in
writein_group (INV10).

115 option_i is a valid option index in writein_group (116). clip_i is a
valid clip index (verifier:41, verifier:42).

116 object is a valid Condition , Step ,
or Segment contained within
self.page .

Returns a list of two ints [group_i,
option_i] where group_i is a
valid group index and option_i is
a valid option index in that group
(119, 120).

117 object.group_i is an int or None (116).
118 object.group_i is None (117, 119) and object is contained within

self.page (116) ⇒ object.option_i is a valid option area index in
self.page (verifier:70, verifier:72, verifier:81, verifier:84, verifier:91).

119 area.group_i is an int (Ballot:48), so a
valid group index and option index
are returned (verifier:21).

120 object.group_i is an int (116, 117), so
a valid group index and option index
are returned (verifier:70, verifier:72,

verifier:81, verifier:84, verifier:93).

6. Pvote 44

Navigator.py (page 4 of 4)

89 def timeout(self):
90 self.play(self.state.timeout_segments)
91 self.goto(self.state.timeout_page_i, self.state.timeout_state_i)

92 def play(self, segments):
93 for segment in segments:
94 if self.test(segment.conditions):

95 if segment.type == SG_CLIP:
96 self.audio.play(segment.clip_i)
97 else:
98 [group_i, option_i] = self.get_option(segment)

99 group = self.model.groups[group_i]
100 selections = self.selections[group_i]

101 if segment.type == SG_OPTION:
102 self.play_option(group.options[option_i], segment.clip_i)

103 if segment.type == SG_LIST_SELS:
104 for option_i in selections:
105 self.play_option(group.options[option_i], segment.clip_i)

106 if segment.type == SG_COUNT_SELS:
107 self.audio.play(segment.clip_i + len(selections))

108 if segment.type == SG_MAX_SELS:
109 self.audio.play(segment.clip_i + group.max_sels)

110 def play_option(self, option, offset):

111 self.audio.play(option.clip_i + offset)

112 if option.writein_group_i != None:
113 writein_group = self.model.groups[option.writein_group_i]

114 for option_i in self.selections[option.writein_group_i]:

115 self.audio.play(writein_group.options[option_i].clip_i)

116 def get_option(self, object):

117 if object.group_i == None:
118 area = self.page.option_areas[object.option_i]

119 return [area.group_i, area.option_i]

120 return [object.group_i, object.option_i]

INVARIANTS In an initialized Audio.Audio object:
INV1. self.clips is a list of Sound the same length as ballot.audio.clips (7).
INV2. self.queue is a list (8, 18).
INV3. Each element of self.queue is a valid index into ballot.audio.clips (10).
INV4. Each element of self.queue is a valid index into self.clips (by INV1 and INV3.)
INV5. self.playing is an int (8, 14).
INV6. self.playing 6= 0⇔ either audio is currently playing, or it has just been stopped and an AUDIO_DONEevent is pending.

(Audio is only started (16) immediately after setting self.playing (14). self.playing is updated (14) when audio stops (main:22–23).)
INV7. self.queue is not empty⇒ self.playing 6= 0. (Only play() adds to the queue (10); after doing so, it immediately

updates self.playing (11, 12, 14).)

PRECONDITIONS REASONS FOR VALIDITY POSTCONDITIONS
1 pygame is bound to the Pygame module.
2 pygame.USEREVENTis an int. AUDIO_DONEis an int.

3

4 audio is a Ballot.Audio object.
5 Since sample_rate is an int (Ballot:123), rate

is an int.6 rate is an int (5). N! if rate is not accepted as a valid sample rate.
7 audio is a Ballot.Audio (4) ⇒ audio.clips is a list of Ballot.Clip

(Ballot:49) ⇒ clip.samples is a string.
self.clips is a list of Sound with the

same length as audio.clips .8

9 clip_i is a valid index into
ballot.audio.clips .10 INV2.

11 INV5.
12

13

14 INV2.
15 INV2.
16 INV4. self.queue is nonempty (15). INV1. The audio system has been

initialized (6). The play() method of Sound returns a Channel .
AUDIO_DONEis an int (2).

17

18

19 The audio system has been initialized (6). If audio is playing, this will
trigger AUDIO_DONE.

20 rate is an int. data is a string. Returns a Sound object for the given audio
data (24).21

22 rate is an int (20). put_int returns a string (27). fmt is a string (21).
23 fmt is a string (22). data is a string (20).
24 file is a string (23). Buffer yields a readable stream object (33). See

Appendix C to verify that the WAV file passed to Sound is
well-formed.

25 type and contents are strings. Returns a RIFF chunk as a string (26).
26 type and contents are strings (25). len returns an int. put_int returns

a string (27).

27 n is an int. Returns the big-endian serialization of n (29).
28 n is an int (27), so a, b, c , and d are integers.
29 a, b, c , and d are integers (28).

30

31 data is a string.
32 self.data is a string. self.pos is an int.

33 length is an int. The caller will
not read past the end of data .

Returns the next length bytes of the buffer
(35).34 self.pos is an int (32, 34).

35 self.pos - length is nonnegative (34). self.data is a string (32).
self.pos is no larger than the length of self.data (33).

6. Pvote 45

6.2.5 Audio.py

1 import pygame
2 AUDIO_DONE = pygame.USEREVENT

3 class Audio:
4 def __init__(self, audio):
5 rate = audio.sample_rate
6 pygame.mixer.init(rate, -16, 0)
7 self.clips = [make_sound(rate, clip.samples) for clip in audio.clips]
8 [self.queue, self.playing] = [[], 0]

9 def play(self, clip_i):
10 self.queue.append(clip_i)
11 if not self.playing:
12 self.next()

13 def next(self):
14 self.playing = len(self.queue)
15 if len(self.queue):
16 self.clips[self.queue.pop(0)].play().set_endevent(AUDIO_DONE)

17 def stop(self):
18 self.queue = []
19 pygame.mixer.stop()

20 def make_sound(rate, data):
21 [comp_channels, sample_size] = ["\x01\x00\x01\x00", "\x02\x00\x10\x00"]
22 fmt = comp_channels + put_int(rate) + put_int(rate*2) + sample_size
23 file = chunk("RIFF", "WAVE" + chunk("fmt ", fmt) + chunk("data", data))
24 return pygame.mixer.Sound(Buffer(file))

25 def chunk(type, contents):
26 return type + put_int(len(contents)) + contents

27 def put_int(n):
28 [a, b, c, d] = [n/16777216, n/65536, n/256, n]
29 return chr(d % 256) + chr(c % 256) + chr(b % 256) + chr(a % 256)

30 class Buffer:
31 def __init__(self, data):
32 [self.data, self.pos] = [data, 0]

33 def read(self, length):
34 self.pos = self.pos + length
35 return self.data[self.pos - length:self.pos]

INVARIANTS In an initialized Video.Video object:
INV1. self.surface is a Surface (7).
INV2. self.layouts is a list of Layout (8).
INV3. self.screens is a list of Pygame Image objects the same length as video.layouts (9).
INV4. self.sprites is a list of Pygame Image objects the same length as video.sprites (10).
INV5. self.layout is a Layout (13).

PRECONDITIONS REASONS FOR VALIDITY POSTCONDITIONS
1 pygame is bound to the Pygame module.

2 im is a Ballot.Image . Converts raw pixel data to a Pygame Image .
3 im is a Ballot.Image (2). im.pixels has length im.width ×

im.height × 3 (verifier:67). im.width and im.height are nonzero
(verifier:67).

pygame.image.fromstring returns a
Pygame Image .

4

5 video is a Ballot.Video .
6 video is a Ballot.Video (5). size is a list of two ints (Ballot:102, Ballot:103).
7 N! if size is not accepted as a valid resolution. INV1.
8 INV2.
9 video.layouts is a list of Layout (Ballot:104) ⇒ layout.screen is a

Ballot.Image (Ballot:108).
INV3.

10 video.sprites is a list of Ballot.Image (Ballot:105). INV4.
11

12 layout_i is a valid layout index. self.layout is the referenced Layout and
its screen is displayed.

13 layout_i is a valid layout index (12).
14 layout_i is the valid index of a Pygame Image in self.screens

(INV3). The Image has size equal to the screen resolution (verifier:62).

15 sprite_i is a valid sprite index.
slot_i is a valid slot index in
the current layout. The sprite
and slot have the same size.

The sprite is pasted into the slot.

16 slot_i is a valid slot index (15). slot is a Rect (Ballot:110).
17 sprite_i is the valid index of a Pygame Image in self.sprites

(INV4). The pasted sprite fits within screen bounds (verifier:64–65).

18 x and y are ints. Returns the index of the current layout’s first
target containing (x , y), or None (22).

19 self.layout.targets is a list (INV5). By INV5, i is a valid target index and
target is a Target .20

21

22 i is returned if the target contains (x , y).

6. Pvote 46

6.2.6 Video.py

1 import pygame

2 def make_image(im):
3 return pygame.image.fromstring(im.pixels, (im.width, im.height), "RGB")

4 class Video:
5 def __init__(self, video):
6 size = [video.width, video.height]
7 self.surface = pygame.display.set_mode(size, pygame.FULLSCREEN)
8 self.layouts = video.layouts
9 self.screens = [make_image(layout.screen) for layout in video.layouts]

10 self.sprites = [make_image(sprite) for sprite in video.sprites]
11 self.goto(0)

12 def goto(self, layout_i):

13 self.layout = self.layouts[layout_i]
14 self.surface.blit(self.screens[layout_i], [0, 0])

15 def paste(self, sprite_i, slot_i):

16 slot = self.layout.slots[slot_i]
17 self.surface.blit(self.sprites[sprite_i], [slot.left, slot.top])

18 def locate(self, x, y):

19 for [i, target] in enumerate(self.layout.targets):
20 if target.left <= x and x < target.left + target.width:
21 if target.top <= y and y < target.top + target.height:
22 return i

INVARIANTS In initialized Printer objects:
INV1. self.text is a Ballot.Text (3).
INV2. Wherever line is bound, the length of line never exceeds 60 bytes. (When line is lengthened (15), it length increases by

at most 51 bytes (verifier:57). It is cleared immediately preceding this lengthening (14) if the lengthening would have increased its
length to more than 60 bytes (12).

PRECONDITIONS REASONS FOR VALIDITY POSTCONDITIONS
1

2 text is a Text .
3 INV1.

4 selections is a list of
length(model.groups) lists,
where each list contains only
valid option indices for each
group.

The selections are printed out.

5 selections is a list of lists (4). group_i is a valid group index and
selection is a list of valid option indices
in that group (4).

6 group_i is a valid index into self.text.groups (5, INV1, verifier:5). group is a TextGroup (Ballot:87).
7 group.writein is an int (7, Ballot:91).
8 selection is a list (5).
9 group.name is a string (6, Ballot:90).

10

11 selection is a list (5). group.options has the same length as
model.groups[group_i].options
(verifier:55), so option_i is a valid index
into group.options (5).

12 group.options is a list of strings (6, Ballot:92). option_i is a valid index
into group.options (11).

13 line is a string (10, 14, 15).
14

15 line is a string (10, 14, 15). group.options is a list of strings (6, Ballot:92).
option_i is a valid index into group.options (11).

16 line is a string (10, 14, 15).
17

18 selection is a list (5).
19 group.name is a string (6, Ballot:90).
20 option_i is a valid option index for group

group_i (5). group.options is a list of
strings (Ballot:92), so option is a string.

21 option_i is an int (20). selection is a list (5).
22 group.name is a string (6, Ballot:90).
23

24

25

6. Pvote 47

6.2.7 Printer.py

1 class Printer:
2 def __init__(self, text):
3 self.text = text

4 def write(self, selections):

5 for [group_i, selection] in enumerate(selections):

6 group = self.text.groups[group_i]
7 if group.writein:
8 if len(selection):
9 print "\n+ " + group.name

10 line = ""
11 for option_i in selection:

12 if len(line) + len(group.options[option_i]) + 1 > 60:

13 print "= " + line
14 line = ""
15 line = line + group.options[option_i] + " ∼"

16 print "= " + line
17 else:
18 if len(selection):
19 print "\n* " + group.name
20 for [option_i, option] in enumerate(group.options):
21 if option_i in selection:
22 print "- " + option
23 else:
24 print "\n* " + group.name + " ∼ NO SELECTION"
25 print "\n ∼\f"

7. Correctness claims 48

Chapter 7

Correctness claims

7.1 No negative integers

A negative integer literal occurs only once in Pvote: Audio.py, line 6, as a constant
supplied to pygame.mixer.init . The unary negation operator is never used,
and the binary subtraction operator is used exactly twice in Pvote:

• length is subtracted from self.pos (Audio:35), which the preceding line
ensures is greater than or equal to length .

• 1 is subtracted from group.option_clips (verifier:42), which the
preceding line ensures is greater than or equal to 1.

Therefore, no computations ever result in negative numbers and no variables
ever take on negative values.

7.2 Navigator starts on page 0 in state 0

Initialization of the Navigator always calls self.goto(0, 0) (Navigator:10). In
the goto method, page_i is 0 (not None) and self.page_i is None (which can-
not equal an integer), so it proceeds to set self.page_i and self.state_i to 0,
and set self.page and self.state to model.pages[0] and its states[0]
respectively. Therefore, the navigator always starts on page 0 in state 0.

7.3 Ballot is committed on the last page

Only one Printer is ever instantiated (main:8). This printer is immediately passed
to navigator and never referenced again in main.py. The Navigator assigns
the incoming printer to self.printer , which is only ever referenced once
(Navigator:14). This line can only be executed when page_i + 1 is equal to
len(self.model.pages) , that is, on the last page.

Also, there is only one assignment to self.page anywhere in the Navigator
(Navigator:15), which is immediately preceded by a call to self.printer.write
if transitioning to the last page. Thus, any transition to the last page must call
self.printer.write .

Therefore, the Navigator always commits the ballot, and only commits the
ballot, when it transitions to the last page.

7. Correctness claims 49

7.4 Overvoting is impossible

There is only one place where options are ever added to the current selection
(Navigator:82). The immediately preceding line ensures that the group is not full
(the number of selections is less than max_sels) at that point. Therefore, the
number of selections in any group cannot exceed max_sels for that group.

7.5 Contest options cannot be selected twice

There is only one place where options are added to the selection (Navigator:82). This
can only be reached with a step.op equal to OP_ADDor OP_APPEND. In the case
of OP_ADD, this line cannot be reached if the option to be added is already selected.
Therefore, no option can appear twice in a group’s selection list unless OP_APPEND
is used. The ballot definition can be examined to confirm that OP_APPENDis used
only in write-in groups but never in contest groups.

7.6 Bounded function call depth

Figure 7.1 depicts all the ways Pvote routines can be called during the processing
of an event received by the main event loop.

The call to review in the review method (Navigator:43) is the only recursive
call. The recursive call passes a write-in group as the group_i argument to
review . Since a write-in group cannot have any options that themselves have
write-in groups (verifier:45–46), recursion cannot proceed more than one level deep.

The call graph otherwise contains no cycles. Inspection of the call graph shows
that a call to play yields a depth of at most 4 calls; thus a call to goto yields a
depth of at most 5 calls; thus a call to invoke yields a depth of at most 6 calls.
Therefore, the processing of a single event cannot exceed a depth of 7 calls.

7.7 Bounded iteration

Pthin has two looping constructs, while and for . The call graph shown in Figure
7.1 is annotated with bubbles that mark every use of these constructs.

Observe that invoke and goto can each be called at most once, and play can
be called at most twice. The number of iterations of any operation that can occur
during the processing of a single event is therefore bounded by one of:

• a number of bindings × a number of conditions
• a number of targets
• a number of steps
• a number of groups × a number of selections
• a number of option areas
• a number of counter areas
• a number of review areas × a number of selections × a number of selections
• 2 × a number of segments × a number of conditions
• 2 × a number of segments × a number of selections × a number of selections

7. Correctness claims 50

goto Printer.write

play

update

per option area

per counter area

per review area

Video.goto

Video.paste

Video.paste

review per selection Video.paste

review per selection Video.paste

Video.paste

per group per selection

main pressper event

touch

per binding

invoke

test

per binding

invoke

test

timeout play

goto

Video.locate

Audio.next

invoke per step

play

goto

execute

Audio.stop

get_option

get_option

per condition

get_optionper condition

per target

play per segment

Audio.play

test

play_option Audio.play

per selection Audio.play

get_option

get_optionper condition

per selection play_option Audio.play

per selection Audio.play

Audio.next

Audio.next

Audio.next

Audio.next

Audio.next

Figure 7.1: Call graph among Pvote routines, rooted from the event loop. Every
use of iteration is indicated with a round bubble. Where a module name is not
specified, the method belongs to Navigator .

7. Correctness claims 51

7.8 At most one audio clip plays at a time

The Pygame audio system is capable of playing multiple audio clips mixed
together, but we wish to avoid ever letting this happen.

To prove that Pvote only ever plays one clip at a time, imagine a token that
conveys the permission to play audio. Only one token exists, and it is passed
back and forth between Pvote’s Audio object and the Pygame audio system. The
playing field of the Audio object represents whether it possesses the token. If
playing = 0, then Pvote has the token; otherwise, Pygame has the token. Starting
playback of an audio clip with the play method of a Sound object should pass
the token from Pvote to Pygame. Receiving an AUDIO_DONEevent from Pygame
should pass the token from Pygame to Pvote.

Now let us verify that Pvote actually upholds this model. The Pvote Audio
object initializes self.playing to 0, so it initially holds the token (Audio:8).
Sound playback is only ever initiated by next method (Audio:16), which can be
called in exactly two ways. Either play calls next (Audio:12), which can only
happen when self.playing is 0 (i. e. Pvote already holds the token); or the main
loop calls next upon receiving an AUDIO_DONEevent (main:22–23) (i. e. Pygame
has just passed the token to Pvote). Thus, Pvote only initiates playback when it
holds the token.

We can also confirm that Pvote accurately tracks whether it holds the token.
Sound playback can be initiated only when self.queue is not empty (Audio:15–
16), which means self.playing must be set to a nonzero value (Audio:14). Thus,
Pvote relinquishes the token when it initiates audio playback.

self.playing is set only upon a call to next (Audio:14). If next is called by
play , then Pvote must already have the token (Audio:11). The only other possibility
is that next is called by the main loop due to the receipt of an AUDIO_DONE
event. Thus, Pvote can acquire the token only when Pygame notifies it that audio
playback has stopped.

7.9 Timeout occurs after timeout_ms ms of idle silence

If timeout_ms ms passes with no events and no audio output, the Pygame timer
will send a TIMER_DONEevent (main:12–13) and audio.playing will be zero,. so
the timeout behaviour will be triggered (main:24–25).

The Pygame timer is set to run only while Pvote is waiting for an event (main:12,
main:14), so a TIMER_DONEevent can only occur when timeout_ms ms has
passed with no other events occurring. In particular, this includes AUDIO_DONE
events, so no sound can have finished playing during the last timeout_ms ms.
For the timeout behaviour to be triggered there must not be a sound currently
playing (main:24). Therefore, the audio output must have been silent for the last
timeout_ms ms.

7.10 Ballot definition is never changed

Inspection of the code shows that, during event processing, assignments are never
made and methods are never called on objects in the ballot definition.

7. Correctness claims 52

7.11 Responsibilities established

R1. Never abort during a voting session.
Termination of a Pthin program can occur in the following ways:

1. Execution reaches the end of the main program.
2. Illegal types of operands are supplied to an expression.
3. A precondition for an expression is violated.
4. A precondition for a library routine is violated.
5. An incorrect number of arguments is passed to a function or method.
6. An assertion fails.
7. Memory is exhausted.

Cause 1: Due to the infinite event loop, execution never reaches the end of the
main program (main:10).

Causes 2 through 6: The annotations in the source code identify all the possible
places where these kinds of errors can occur. These appear in the ballot loader, the
verifier, and the initialization routines for the audio driver and video driver, all of
which execute on startup before the voting session begins. After these routines
have successfully completed executing, it has been established (mainly by the
verifier) that these kinds of errors cannot occur at a later point.

Cause 7: By the memory management rules in section 3.8, memory stays
allocated only by binding values to names, placing values in lists, creating cyclic
reference chains, or passing values as arguments. Static analysis of the program can
determine the total number of global names, local names, and field names used, so
the space used by bindings is bounded.

Only strings and lists have variable size. Strings are never manipulated during
event processing except when printing the ballot; we will establish for R10 that
Printer never constructs a string longer than 70 bytes. Lists are made longer
only in two places: the execute method in Navigator appends to the current
selection (Navigator:82), and the play method in Audio appends to the play queue
(Audio:10). The lengths of selection lists are bounded by max_sels (Navigator:81).
Examination of the call graph (Figure 7.1) shows that Audio .play is only called by
Navigator .play , which can only be called by timeout , invoke , or goto , which
is itself called only by timeout or invoke . timeout can only be called when
the play queue is empty (main:24–25), and invoke clears the play queue before
adding anything to it (Navigator:72). Since we can see that the number of calls
to Audio .play from Navigator .play is bounded, the length of the play queue is
bounded.

Cyclic reference chains can only created via list containment or object fields.
During event processing, lists or objects are never placed into lists, and as-
signments to object fields (Audio:14, Audio:18, Navigator:15, Navigator:16, Video:13)
always assign integers, empty lists, or elements of the ballot definition, which are
never mutated.

Finally, Section 7.6 established a bound on the depth of the call stack, and the
size of each stack frame is predetermined by the number of arguments and local
names in each function or method.

Thus, Pvote’s maximum memory usage is determined by the ballot definition.

7. Correctness claims 53

R2. Remain responsive during a voting session.
For an interactive program, “responsive” means that the program is always

ready to process user input within a reasonably short time. We are concerned
specifically with the code that runs in a voting session — that is, just the main
loop, not including the initialization steps that happen before it. Since Pvote’s main
loop alternates between waiting for events and processing events, responsiveness
depends on the time required to process each event.

We assume that it takes a negligible time to evaluate individual expressions in
Pthin. Of all the Pygame functions used during the main loop, only the Surface
method blit() does a variable amount of work; its work is proportional to
the area of the pasted sprite. The verifier ensures that sprites fit into their slots
(verifier:{13, 22, 26, 30, 33, 36, 39–40, 48, 49–52}) and that slots can be no larger than
the screen resolution (verifier:61–62), so the area of pasted sprites is bounded by the
area of the screen. Thus, we also assume that it takes a negligible time to invoke
individual Pygame functions.

There are less than 500 lines of code in Pvote, which isn’t enough for straight-
line execution to cause an appreciable delay; only loops could result in enough
latency to make Pvote unresponsive. Loops can arise from Pthin’s two looping
statements (while and for) and from recursive function calls. Section 7.6 showed
that function call depth is bounded by a constant, and Section 7.7 showed that
iteration counts are bounded by parameters in the ballot definition file.

Therefore, there is an upper bound on the time it takes to process each event
that depends on the length of lists in the ballot definition. Keeping the sizes of
these lists small will ensure that Pvote always stays responsive.

R3. Become inert after a ballot is committed.
As established in Section 7.3, the ballot is only committed upon arrival at

the last page, where self.page_i becomes len(self.model.pages) - 1
(Navigator:13–15). Thereafter, the page and state can never change again, since they
can only change if self.page_i != len(self.model.pages) - 1 (Navi-
gator:12, Navigator:15–16). Thus, the ballot can never be committed more than
once.

To ensure that Pvote becomes totally inert, one could examine the ballot
definition to see that there are no bindings defined for the last page. As the
only incoming messages to the navigator are press (main:16), touch (main:21),
and timeout (main:25), eliminating bindings would guarantee that only timeout
would ever get called after that point. The timeout method can only play
audio and call goto , which would not cause a page or state transition because
self.page_i == len(self.model.pages) - 1 .

R4. Display a completion screen when and only when a ballot is committed, and
continue to display this screen until the next session begins.

As established in Section 7.3, the ballot is committed upon and only upon
arrival at the last page. The last page’s screen is the completion screen. Since no
more transitions can happen after the last page is reached, this screen remains on
the display until Pvote is restarted.

It is up to the author of the ballot definition to ensure that the completion screen
has a distinct appearance.

7. Correctness claims 54

R5. Exhibit behaviour in each session independent of any previous sessions.
By design, Pvote is restarted for each voting session and does not read from

any external storage except for the ballot definition, which it never rewrites, so it
cannot carry any state from previous voting sessions.

R6. Exhibit behaviour independent of which parts of buttons are touched.
Incoming touch events are processed only by a single clause in the main event

loop (main:17–21). This clause translates the touch coordinates into a target index
by calling locate on the Video object, which has no side effects (Video:19–22). Only
this target index is then passed on to the Navigator . Therefore, within a given
target, all touch coordinates have the same effect. It is up to the author of the
ballot definition to ensure that the targets have reasonable sizes and locations.

R7. Exhibit behaviour that is determined entirely by the ballot definition and
the stream of user input events and their timing.

Pvote is single-threaded, uses no shared memory, and does not access the
clock or any sources of randomness, so its behaviour is deterministic except for
information introduced by the incoming event stream. The incoming event stream
contains user-generated events, TIMER_DONEevents, and AUDIO_DONEevents.
TIMER_DONEevents are determined entirely by the timing of user-generated
events and the timeout_ms parameter. AUDIO_DONEevents are determined
entirely by the processing of other events and the length of audio clips in the ballot
definition. Therefore, given the same sequence and timing of user input events and
the same ballot definition, Pvote will always exhibit the same behaviour.

R8. Commit valid selections.
Invariant INV8 in the Navigator establishes that self.selections is always

a list of lists, with one list per group. This format ensures that the selection data
passed to the Printer cannot express any groups (contests or write-ins) other than
those specified in the ballot definition. Any option appended to a selection list is an
option referenced in a Step (Navigator:76, Navigator:82). The verifier ensures that this
option reference is valid, whether it is a direct reference (verifier:72) or an indirect
reference through an option area (verifier:91, verifier:21). Section 7.4 establishes that
overvotes cannot occur. It is up to the author of the ballot definition to ensure that
the Text data accurately represents the contests and options.

R9. Commit the ballot when and only when so requested by the voter.
Section 7.3 established that the ballot is committed when and only when there

is a transition to the last page. That is as much as can be upheld by technical means;
only a human can verify that the voter’s expectations about committing are met.

To ensure this, one must examine the ballot definition to see that all keys and
targets that cause transitions to the last page are clearly identified to the voter
(visually and aurally) that they will commit the ballot. Also, no other keys or
targets should be presented in a way that implies they will commit the ballot, and
no visual display or audio feedback should falsely indicate that the ballot has been
committed when it has not.

To minimize the possibility of voter error, one can examine the ballot definition
to see that there is adequate confirmation before entering any page or state with a
binding that causes a transition to the last page.

7. Correctness claims 55

R10. Correctly and unambiguously commit the selections the voter made.
This requires establishing four things:

1. Selection and deselection of options indeed occurs correctly according to user
actions. This is argued below for R13.

2. The ballot is committed when and only when the voter so requests. This is
argued above for R9.

3. The printed selections are accurate. Printing occurs in the write method
(Printer:4–25).

• Every write-in group with a nonzero number of selected options causes
the first loop to be executed (Printer:11–15). This loop proceeds through
the character options in the order they were selected, and adds each
option in the write-in to line exactly once (Printer:15). Anything that is
added to line is printed exactly once (Printer:13–14, Printer:16).

• Every contest group with a nonzero number of selected options causes
the second loop to be executed (Printer:20–22). This loop proceeds
through options in their order in the Group (Printer:20). Since all the
option indices in the selection list must be valid (R8), every option that
is present in the selection list will be printed exactly once (Printer:21).

4. The printed selections are unambiguous. Since the print statement always
finishes its output with a newline, everything printed by print starts on
a new line. Because group and options names are at most 50 bytes long
(verifier:54, verifier:57), no string constructed in Printer ever exceeds 70 bytes
in length (Printer:9, Printer:12–15, Printer:16, Printer:19, Printer:22, Printer:24). All
the strings sent to print contain only printable ASCII characters (Ballot:134).
Therefore, as long as the printing hardware can fit 70 characters across the
page, no group or option names will wrap. Thus, every printed line can be
identified by its first character:

• + introduces the name of a write-in group (Printer:9).
• = introduces the content of a write-in (Printer:13, Printer:16).
• * introduces the name of a contest group (Printer:19, Printer:24).
• - introduces the name of an option (Printer:22).
• ∼ marks the end of the ballot.

Therefore, if all the TextGroup s in the ballot definition have unique names, the
groups can be uniquely identified on the printout. Also, options in a contest
group are printed separated by newlines, and options in a write-in group
are printed separated by tildes (ASCII 126), which are not allowed in option
names (Ballot:134). Therefore, if all the options in each TextGroup have unique
strings, the options can be uniquely identified on the printout.

R11. Present instructions, contests, and options as specified.
The instructions, contests, and options are prerendered images embedded in

the ballot definition. Thus, as long as the text and other information in the images
is correct, it will be displayed correctly.

7. Correctness claims 56

R12. Navigate among instructions, contests, and options as specified.
Navigation occurs only by the goto method, which is called whenever a

binding is invoked (Navigator:74) and whenever a timeout occurs (Navigator:91). As
long as the destination page and state are specified correctly in the ballot definition,
the transition will occur to the correct page and state (Navigator:12–16).

R13. Select and deselect options according to user actions as specified.
Selection and deselection occurs entirely within the execute method, which

can only be called in response to the invocation of a binding (Navigator:71), and a
binding can only be invoked in response to a user action (Navigator:51, Navigator:55).
If the selection steps in bindings are specified correctly in the ballot definition, then
the correct selection or deselection operations will take place (Navigator:76–88).

R14. Correctly indicate whether options are selected when directed to do so.
R15. Correctly indicate how many options are selected when directed to do so.
R16. Correctly indicate which options are selected when directed to do so.

The update method in Navigator is called whenever goto is called (Naviga-
tor:18), and goto is always called each time a binding is invoked (Navigator:74) or a
timeout is received (Navigator:91). The update method always redraws everything
on the screen. It first pastes the current layout’s full-screen image (Navigator:20,
Video:14). Then it pastes the state’s sprite (Navigator:21).

The indication of whether options are selected is determined by the flag
unselected (Navigator:24), which chooses between the selected and unselected
sprites for each option area. As long as the option area points to the correct option
and the option points to the correct sprite_i , this will be displayed correctly.

The indication of how many options are selected is determined by the count
variable (Navigator:30), which is added to a counter area’s sprite_i to select the
sprite to display. As long as the counter area points to the correct group and sprite
index, this will be displayed correctly.

The indication of which options are selected is done by the review method.
Calls to paste appear exactly twice in this method: once for option sprites
(Navigator:41) and once for the cursor sprite (Navigator:45). The option sprite is
option.sprite_i , the selected sprite for an option, and the option is taken
directly from the selection list (Navigator:40). So it cannot display any unselected
options. On the other hand, the paste operation is executed once for every option
in the selection list, since the number of selections cannot exceed max_sels and i
takes on every value from 0 to max_sels − 1.

A. Glossary 57

Appendix A

Glossary

ballot style: A combination of contests and options (for a particular set of voters).
binding: A triple of stimulus, condition, and response.
committed: A ballot is committed when the selection of votes is finalized. For a

DRE, a ballot is committed when it is recorded. For a ballot printing or
marking device, a ballot is committed when it is printed.

condition: A logical predicate concerning the current selection state.
contest: A race or a proposition.
contest group: A group representing a contest on the ballot, where the options are

candidates or referendum choices.
empty: A group, contest, or write-in is empty when it has no options selected.
full: A group, contest, or write-in is full when the maximum options are selected.
group: A set of options that can be selected (see contest group and write-in group).
invoke: To invoke a binding is to carry out the response it specifies.
match: A binding matches when its specified stimulus matches the input received.
operative: A binding is operative when all its conditions are satisfied.
option: A choice in a group (a candidate in a race for office, one of the choices for

a proposition, or a character that can be entered for a write-in).
overvote: Selecting more than the maximum allowed number of selections in a

particular contest.
response: A system behaviour in response to user input (e. g. changing a selection,

navigating to another page, or playing audio).
selection: An option that is currently selected.
selection state: The list of options that are selected in each group.
stimulus: An instance of user input (e. g. a keypress or a screen touch).
undervote: Selecting fewer than the maximum allowed number of selections in a

particular contest.
write-in group: A group representing the text written into a single write-in option,

where the options are characters.
write-in option: An option that allows a candidate’s name to be written in.
voting session: The period from when a voter starts interacting with a voting

machine until a ballot is committed or the voter abandons the machine.

B. Deployment example 58

Appendix B

Deployment example

To evaluate Pvote, it may help to have in mind some context in which it will be
used. Here is just one example of a possible deployment scenario for an electronic
ballot printer based on Pvote.

B.1 Before election day

The ballot definition files are prepared and widely published, along with their
hashes, before election day.

B.2 Election day before polls open

The polling place is divided into three areas: the public area, where anyone can
stand, the voting area, which voters are permitted to enter after they have been
authorized to vote by pollworkers, and the private area, which is accessible to
pollworkers only.

The voting area contains any number of voting stations. Each voting station has
a touchscreen, a pair of headphones, a keypad, and a printer. There is a shield or
curtain around the station to protect the voter’s privacy. The voting stations are
stateless.

The private area contains a ballot scanner and a number of bins for flash cards
(one bin for each ballot style to be used at that polling place). Before opening the
polls, the pollworkers use a flash station to prepare some flash cards for each ballot
style. The flash station can be an ordinary PC. For each ballot style, a pollworker
carries out the following steps:

1. Load the ballot definition file onto the flash station. The flash station displays
the hash of the file.

2. Verify the computed hash against the published hash.
3. Insert flash cards one by one. The flash station erases each card and copies

the file onto the card.
4. Label each flash card according to its ballot style.
5. Deposit each flash card in the bin for its ballot style.

B. Deployment example 59

The pollworkers can then shut down the flash station, or leave it set up in
case they want to be able to prepare flash cards on the fly with other ballot styles
throughout the day (e. g. for the occasional voter at the wrong polling place). After
the flash cards are prepared, the polling place is opened.

B.3 Election day with polls open

The voting procedure for each voter is as follows:

1. The voter lines up to be authorized to vote.
2. After checking that the voter is authorized and determining which ballot style

the voter should get (which might depend on the voter’s party affiliation or
address), the pollworker takes a flash card from the appropriate bin.

3. The pollworker proceeds with the voter to any available voting station and
inserts the card. The pollworker inserts a key into the station and turns it,
which aborts and restarts Pvote. Pvote loads the ballot definition from the
card on startup. Once the initial screen appears, the pollworker removes the
card, walks away, and returns the card to its bin.

4. The voter privately interacts with Pvote to make selections on the ballot.
When the final screen is reached, the voter’s selections are printed out on
a paper ballot.

5. The voter verifies the paper ballot.
6. The voter carries the paper ballot (covered in a privacy folder) to the ballot

scanner and places it in the scanner. The scanner records the actual scanned
image of the paper ballot.

B.4 Election day after polls close

The counts reported by the ballot scanner are posted locally at each polling place.
Each polling place posts its counts on a public website.

Each polling place also posts encrypted files containing the scanned images of
its paper ballots on the public website. An openly chosen random sample of the
polling places, as well as any polling places with a sufficiently narrow margin of
victory, post their scanned images of paper ballots without encryption. Members
of the public can run their own OCR software to verify the counts.

After 3 years, the encryption keys are published so the entire election can be
verified by the public.

C. WAV audio file format 60

Appendix C

WAV audio file format

The essential elements of the Microsoft WAV file format are as follows:

• All integers are represented in little-endian order.
• A chunk is a block of data preceded by an 8-byte header. The first 4 bytes of

the header are a chunk type identifier, and the next 4 bytes give the length of
the data block, not including the header.

• A WAV file consists of a chunk of type "RIFF" that contains the 4-byte string
"WAVE" followed by other chunks.

• The minimal two required chunks are a "fmt " chunk and a "data" chunk.
• The "fmt " chunk contains this 16-byte structure:

Size Contents
2 bytes compression type (1 for none)
2 bytes number of channels (1 for mono, 2 for stereo)
4 bytes number of samples per second
4 bytes number of bytes per second
2 bytes number of bytes per sample × number of channels
2 bytes number of bits per sample

• The "data" chunk contains the audio sample data. For 16-bit samples, each
sample is a signed little-endian 16-bit value.

