
User-Directed Screen Reading 
for Context Menus on Freeform Text 

Ka-Ping Yee
Group for User Interface Research
University of California, Berkeley

ping@zesty.ca

ABSTRACT 
This paper proposes a variation on existing screen-reading
technology to help sighted users automate common
operations. When the user wants to perform an operation
related to some displayed text, the user can direct the
window system to read text near the mouse pointer and
offer possible actions. This can be considered an extension
of the context menu applied to freeform text instead of
GUI objects. The proof-of-concept implementation of this
technique helps the user make appointments based on
dates and times mentioned in e-mail.

Keywords 
Screen reading, context menus, group scheduling,
Hotclick, Smart Tags.

INTRODUCTION 
A significant part of the work we do on computers consists
of transferring information from one place to another. A
piece of information is presented on the screen in one
form, we interpret what it means, and then we re-enter it
somewhere else in a different form. As our example here,
we consider the task of making appointments in an
electronic calendar based on messages received in e-mail.
Other common examples include retyping URLs, e-mail
addresses, telephone numbers, or street addresses.

Perhaps we could have computers take care of some of this
work for us, if they could only understand what they were
themselves displaying. Fortunately, a lot of this work has
already been done in the form of screen-reading software,
which is designed to extract text from the screen so that it
can be converted to speech or displayed in Braille for the
blind. A recurring theme in human-computer interaction
is the idea that designing and developing technology to
improve accessibility for a particular group can lead to
improved flexibility and capabilities for everyone. Here we
explore one possibility for applying screen-reading
technology to assist the sighted.

CONTEXT MENUS 
A widely used and effective user interface technique is the
context menu. By clicking on a GUI object on the screen,
the user can bring up a menu of commands relevant to the
object. This interaction embodies an object-oriented model
by enforcing that the noun (object) be selected first, then
the verb (method). Among its advantages are the ease
with which it lets the user ask “What can I do?”.

However, this kind of interaction is typically available only
for objects that are discretely identified within the software
system, such as icons, hyperlinks, or window regions. It is
interesting to consider how we might apply context menus
to conceptual objects that do not yet have a distinct
representation in the software system, particularly infor-
mation mentioned in freeform text. Here, we experiment
with using string pattern matching to determine the target
of the action. We will use the term “text helper” to refer to
a software component that recognizes patterns in text in
order to offer a specific service; an appointment-maker and
a URL-follower would be two examples of text helpers.

CALENDARS AND SCHEDULING 
A great deal of past work has been done in this area of
group scheduling, including automated negotiation of
meeting times, shared online calendars, and integration of
calendars with e-mail. The approach we adopt here leaves
complete control of the calendar in the user’s hands; we
merely automate the step of making an appointment based
on the content of an e-mail message. Instead of relying on
the text of the message to obey a particular format for
expressing appointments (like [3], for example), we look
for text patterns that indicate times and dates. This
includes relative indicators such as “next Saturday” as well
as absolute indicators such as “April 5”. In the ideal case
the task of scheduling an event is reduced to two clicks.

While the general problem of looking at an entire message
to determine a meeting time is hard, since the message
might mention many date-related or time-related terms, we
can afford to match against terms as general as
“tomorrow” because we know where the user is pointing.

RELATED WORK 
Microsoft’s Smart Tags feature [1] aimed to provide
similar enhancements. A Web browser with Smart Tags
would scan the text on pages for known keywords (such as

Copyright is held by the author/owner(s).

CHI 2003, April 5–10, 2003, Ft. Lauderdale, Florida, USA.

ACM 1-58113-637-4/03/0004.



company names or stock symbols) and mark each
recognized keyword. The user could then click on the
marked words to get a context menu. On a company
name, for example, the menu might offer to look up a
stock quote, get a company report, or search for related
news articles. The approach suggested here is different in
two ways. First, we insert text-extraction functionality at
the system level, not the application level. Thus, a single
text helper could offer appointment-scheduling assistance
anywhere text appears – in a text file, a Web page, an e-
mail message, a dialog box, and so on. Also, text helpers
become interchangeable components that users can choose
to activate, rather than functionality determined only by
the application author. Second, text extraction is initiated
and directed by the user, rather than having the application
pre-scan the text. This avoids the visual clutter created by
marking many words on a page and saves the processing
time required for pre-scanning an entire document. More
importantly, it gives us much greater flexibility in the
patterns we can match, because the pattern matching is
directed by the location of the mouse pointer. For
instance, it would not make sense for Smart Tags to mark
every occurrence of the phrase “the 15th” in every
document because it would occur too often in unrelated
contexts. However, if the user clicks on “the 15th” we can
suggest scheduling an event on the 15th of the month.

The Opera Web browser has a Hotclick feature [2] very
similar to what we suggest here: the user can select any
piece of text, then right-click on it to get a context menu.
The menu offers to look up the selection in a dictionary,
translate it into another language, and so on. However, the
user is required to select the exact target string, and the
context menu is always the same. This work takes a
middle ground between Smart Tags and Opera: pattern
matching is applied to find relevant text and commands,
but text extraction is initiated and directed by the user.

SOFTWARE ARCHITECTURE 
We envision the design of a general architecture for
supporting user-directed screen reading as follows. It is
helpful to establish a clean separation between the screen
reader and the applications. Screen reading functionality
fits well at the window manager level, since the window
manager knows the layout of the screen and can grab
mouse events before they get to applications. The window
manager reserves a special action to mean “What can I do
with this text?” All of the available text helpers
pre-register with the window manager.

When the user initiates a screen-reading operation, the
window manager first extracts the text in a region around
the mouse pointer. It could obtain the text by querying the
application under the mouse pointer directly, by
communicating with the text-bearing toolkit widgets near
the mouse pointer, or by performing optical character
recognition on an image of the screen. Then the window

manager asks each text helper what it can do with the text.
Finally, the window manager gathers the answers from all
the text helpers to form the context menu.

PROTOTYPE 
The prototype implementation is integrated with the
Sawfish window manager and extracts text from Gnome
Terminal windows. As it is just a proof of concept, it does
not perform OCR; it relies on the Gnome Terminal to get
text. Holding down Alt while clicking the right mouse
button on a piece of text triggers user-directed screen
reading. Since visual proximity does not always
correspond to textual proximity, we use the following
algorithm for finding “hits” on the text. We define the
“hot region” to be a circle with radius 20 pixels around the
mouse pointer. For any line of text that intersects the hot
region, we extract the entire horizontal line of text. We
also extract one additional line of text beyond the first and
last lines thus selected. Then we send this entire string to
each text helper for pattern matching. For each phrase
match returned by a text helper, we then examine the
bounding box of the phrase on the screen to see if it
intersects the hot region. This method provides plenty of
context for text helpers, so that matched phrases can
extend far beyond the hot region into the surrounding text,
but avoids registering hits too far away from the cursor.

 

Figure 1. Finding hits in the text near the mouse pointer.

CONCLUSION 
We have proposed an idea for combining screen-reading
technology with context menus to automate some common
user actions. We have implemented a prototype that helps
users schedule events based on dates and times mentioned
in freeform text as a proof of concept. This is an
interesting instance of how assistive technology for the
blind can improve interaction for sighted users.

REFERENCES 
1. Microsoft. Office XP Tour: Simplifying Productivity. See:

http://www.microsoft.com/office/evaluation/tour/page2.asp
2. Opera Software. Built-in Search and “Hotclick” Features.

See: http://www.opera.com/privacy/search/index.dml
3. S. Sen, T. Haynes, and N. Arora. Satisfying User Preferences

While Negotiating Meetings. In International Journal of
Human-Computer Studies, 47:407–427, 1997.


