Prerendered User Interfaces for Higher-Assurance Electronic Voting

Ka-Ping Yeé David Wagnet Marti Hearst Steven M. Bellovif
ping@zesty.ca daw@cs.berkeley.edu hearst@sims.berkeley.edu smb@cs.columbia.edu

Abstract transparency of paper voting, the correct functioning of
. . . . a computer program is difficult to assure, and computer
We propose an electronic voting machine architectur

in which th i terf . dered §ai|ures are an everyday part of modern life. Moreover,
n whic € voling user Intertace 1S preréndered anGy o ctigng are an especially high-profile and potentially

.pl:bhfshed. before_f_elilctlon t'?a);' -2216 r;rer(_anderedl userrewarding target for attack, and a broad range of parties
INtertace 1S a verifiable artiract — aelectionic Sampie g, 1o penefit from influencing their outcome.
ballot— enabling public participation in the review, ver-

ification, usability testing, and accessibility testing of the The typical challenge n softwgre security is to design
. . . . software to defend against various threats. However,
ballot. Preparing the user interface outside of the votin

machine dramatically reduces the amount and dlmcult)?oecause the stakes_ are so high for e_Ie_qtronlc vot_ln_g, the
e . threat model must include the possibility of malicious

of software verification required to assure the correctness . . .
. : . _code in the voting system. Even in the absence of

of the election result. We present a design for a high-7" " - .)
. . deliberate insider fraud, well-intentioned programmers

assurance touchscreen voting machine that supports &

. . .can make mistakes. Thus, our challenge is not only
wide range of user interface styles and demonstrate |t§0 desian a secure voting machine proaram. but also fo
feasibility by implementing it in less than 300 lines of 9 9 prog ’

Python code. design an o_verall arphitectu_re for the election system that
lets us confirm that it really is secure.
) Though software is involved at many stages of the
1 Introduction election process, this work focuses on the software in
the voting machine itself. We will explain in Section 3.2
Democratic elections are increasingly depending upofyhy we believe this to be the most critical software
electronic voting systems. In 2002, the United Stategomponent of the system. Unfortunately, the software
passed the Help America Vote Act [1], which includes j today’s voting machines is far too large to allow
a requirement for “at least one direct recording elec-aytomated verification or thorough independent review,
tronic voting system or other voting system equippedgiyen the time and cost constraints of the election equip-
for individuals with disabilities at each polling place.” ment certification process. In 2004, Kohno, Stubblefield,
Over $300 million in federal funds has been disbursedrypin, and Wallach [5] examined the source code for
specifically to pay for new voting machines [15]. Many the Diebold AccuVote TS machine and found it to
other governments around the world are planning aheagpntain many serious design and engineering errors,
for large-scale deployment of electronic voting. declaring it “far below even the most minimal security
Electronic voting machines have the potential to pro-standards applicable in other contexts.” The main Accu-
vide significant improvements in usability and acces-\gte TS program consists of over 31,000 lines of C++
sibility over paper ballots. For example, they can becode and resource scripts, ignoring comments and blank
designed to help voters detect and correct mistakesines. Verifying the correctness of a program this size is
they can provide alternate user interfaces for individual%verwhe|mmg|y difficult.
with disabilities; and they can be programmed with \\e observe that the user interface (Ul) is a major
support for more language choices than a typical papegoniributor to software complexity. By our estimate,
ballot. However, the electronic voting process lacks they,o voting Ul constitutes about 14,000 lines of the

*University of California, Berkeley, CA, 94720 aforementioned source code. The key idea we propose
fColumbia University, New York, NY 10027 is to construct and verify a prerendered description of

the Ul before the election. Prerendering the Ul yields
several significant advantages:

designed so that customization or new functionality
can be provided without changing the trusted code.

4. Support public review. The success of a demo-
cratic election depends not only upon the actual
reliability of the voting system but also upon public
confidence in that reliability. Therefore, the election
system should allow as much as possible of the

e |t simplifies the software running in the voting
machine, facilitating its verification.

¢ |t mitigates the conflict between accessibility and
security concerns by enabling the Ul design to
be highly flexible without affecting the security election to be verifiable by the public, including
properties of the machine. non-programmers.

e It mitigates the conflict between the proprietary 5. Support accessibility. The architecture should

interests of voting machine vendors and the public
benefits of transparency by reducing the portion of
code that has to be disclosed to evaluate the security
of the machine.

It enables the Ul to be updated and verified indepen- 6.

dently of, and more easily than, the voting machine
software.

It allows the Ul to be separately published and to
be run on commodity hardware, enabling it to be

allow for user interfaces that enable individuals with
disabilities to vote privately and independently and
should facilitate their participation in reviewing and
testing these user interfaces.

Support interoperability. Election officials should

be able to mix and match components from many

vendors. To this end, the system should define clear
interfaces between components. This enhances
the effectiveness of testing, as components can be

tested in isolation and multiple implementations of
a component can be checked against each other.
Also, the resulting market competition may reduce
In this paper, we propose an electronic voting machine €election costs.

architecture based on the concept of a prerendered userThe following are some basic requirements of
interface. We present a specific software design for @jemocratic elections:

touchscreen voting machine in this architecture, describe
our prototype implementation of the machine, and eval-
uate this implementation in terms of its security and

tested by anyone — not just those with access to the
equipment that will actually be used on election day.

e Each voter may only vote once, and only in contests
for which the voter is authorized.

verifiability. e \otes must be reported accurately.
e Each voter’s choices must be kept secret.
2 Goals e The voting system must not provide opportunities

for voters to sell their votes or to be coerced into
voting a particular way.

We begin by identifying six high-level goals for a secure, .)
e The voting system must work reliably.

verifiable, and usable election architecture.
o) Standard ballot features that the voting system should
1. Minimize trusted code. Reducing the amount g, include “vote fok out of n,” write-ins, multiple
of trusted code (the portion of code that needsyngages, and straight-ticket voting, and the system
to be verified) makes software verification easiergnaiq not preclude the possibility of ranked voting.
and more reliable. By “verification” we mean gectronic voting systems are also expected to prevent
informal code review, |ndependeqt security audits,, giers from casting arovervote (choosing too many
formal methods, and everything in between. All ggjactions) and to notify voters if they are about to

these kinds of software verification are highly sen-nqeryote(choose fewer than the allowed number of
sitive to code size, because small changes can ha"§‘elections).

far-reaching effects and software components can |, this work, we focus on producing voting machine
interact in unexpected ways. software that works correctly and verifying that it works

2. Design for verification. The difficulty of software correctly. Other parts of the election system such as
verification is reduced by designing code and dataabsentee ballots, voting by mail, and voter registration
structures specifically to make them more amenableyre outside of our scope. To run an accurate election,
to analysis. Examples include componentizationit js also necessary to make sure the machines are
and limited data flows. actually running the software that was approved and to

3. Minimize code churn. If the trusted code changes protect the voting machine and its storage media from
infrequently, each release can be tested and auditehmpering. We do not address physical security and
more thoroughly. Hence, voting systems should bechain-of-custody issues in this paper.

voter input
(secret)

election officer input ballot design ballot definition X . anonymous votes election result
> - P voting machine - | tally program >
tool (public) (public)
VNN VNN
,' : \ voting software ,' : \\
(public)

Ak

! | \

Figure 1. Simplified block diagram of the proposed election system architecture. The dashed arrows hint at

the complex web of dependencies (including source code, operating systems, compilers, editors, and other tools)
underlying each software component. Publishing the inputs and outputs of the DRE (shown in bold) lets us cut away
these dependencies when performing a security evaluation.

3 Architecture software programs is generally very difficult. The state
of the art in automated software verification can only

Election systems depend on software for many differenterify small programs of limited complexity, against

functions before, during, and after the actual day ofspecifications that are difficult to write. Software review

the election. Because so little information is typically by human experts is time-consuming and can be prone

published about the programs used to conduct an electio error. Furthermore, program verification requires

and their inputs and outputs, trusting the outcome ofdisclosure of the software code, which often faces legal,

a computerized election today requires trusting nearlyfinancial, or political barriers. Disclosing code always

everything in the system —including the software thatimproves the transparency of the process, but it is use-

produces ballot definitions, the voting machine softwareful to be able to check the correctness of an election

the software that tallies votes, and all the operating syswithout requiring inspection of all the code. For all of

tems, compilers, editors, and other tools that were usethese reasons, our architecture is designed to minimize

to produce these programs. In the following sectionsdependence on program verification.

we present a general election system architecture that

redypes what mu;t be accepted on faith to trust th%_z Election Verification

validity of the election result.

“Direct recording electronic” (DRE) is the industry term

e - for the machine that handles voter input and recording of

3.1 \Verification Methods votes. The DRE is the first step in the chain; its input is

If a software component has inputand outputy, and ~ @human interaction. Election rules forbid “leaking” vote
if it is supposed to implement a deterministic function information that can be identified with specific voters, so

f, there are two ways to check that the component hathe human interaction must be kept secret. Consequently,

produced the correct output: result verification of the DRE is not an option; program
verification is the only way to gain trust in the DRE.
1. Program verification. Examine the implementa- However, if the DRE stores votes in anonymous form,

tion of the software component and verify that it its output can be published. In addition, the inputs and
matches the specification gt This may include outputs of all other components of the system can be
manual source code analysis, formal verification, orpublished, and so can be checked by result verification.
other methods. Thus the only part of the process that requires program
2. Result verification. Given z, computef(z) and verification is that part ranging from the input of the
check that it matches the actual outpyt, Do- Voter's selections to the point where the selections are
ing this requires records of both andy and an recorded anonymously.
independent implementation ¢f Therefore, our approach is to minimize the size and
complexity of the DRE software (even if it means that
Program verification only needs to be performed onceother components become more complex) and to publish
for a given implementation of, whereas result verifi- all of the DRE’s inputs and outputs —except for the
cation must be performed for each tinfeis executed. votes themselves, until they are anonymized —to enable
However, proving statements about the behaviour ofesult verification of the rest of the process (Figure 1).

The ballot definition is published far enough in ad- 3.4 Virtual Machine
vance that it can be validated before election day. For
instance, the ballot definition might be published onlIn our architecture, the ballot definition is a high-level,
government websites and made available to candidategfatform-independent description of the user interface
anyone would be able to download it and run softwarefor voting, displayed by airtual machine(VM) that
on their own computer to see exactly what will be shownprovides a high-level interface to the input and output
to voters on election day. This provides a chance tdhardware. The job of the VM is to respond to user
detect omitted races, misspelled candidate names, layoifiput by displaying images or playing sound clips as pre-
errors, and other ballot errors. In this way, the publishedscribed by the ballot definition, keep track of the user’s
ballot definition is analogous to the paper sample balloselections, and record the user’s selections anonymously.
typically mailed to voters before an election. Implementing the VM for a variety of DRE hardware

The anonymized cast vote records from every DRE ardlatforms would enable all of them to interoperate using
published for all to see after the election. Anyone canthe same formats for ballot definitions and recorded
add up the votes in these files to obtain the election-widé/otes. We hypothesize that the VM implementation can
totals and compare them against the official totals td>¢ made considerably smaller, simpler, and easier to
gain confidence that tallying was done correctly. Also, Verify than the software in today’s DREs.
pollworkers and observers might be encouraged to check Our proposal can be compared to the previously pro-
the summary tapes that are printed at the close of pollposed “frog” voting architecture [2]: both are motivated
against the published electronic vote files to verify thatby a similar desire to reduce the size and complexity
the files were not tampered with while in transit. of the trusted base on which the security of the voting

The consequence is that neither the ballot layout softsystem rests. The frog architecture separates the voting
ware nor the vote tallying software need to be verified.process into two steps: vote generation and vote casting.
The published ballot definitions, DRE software, andThe voter first selects their votes on the vote-generation
anonymous vote records are sufficient to allow membersnachine, which stores them on a “frog” (a storage
of the public to independently check the accuracy of thedevice). Then the voter puts the frog into the vote-casting
election outcome. machine, which displays the contents of the frog for the

voter to check, and upon confirmation, casts the votes.

A key assumption of the frog architecture is that
responsibility for security rests on the simpler vote-
In a typical DRE, much of the software code is responsi-casting machine; the vote-generation machine will have
ble for generating the voting user interface in real-time“no need for high security” [2]. This assumption requires
on the running machine. This includes the code forthat we rely on voters to check their frogs carefully
arranging the layout of elements on the screen, renderingefore casting them. But some voters may give the
text in a variety of typefaces and languages, drawingvote-casting machine only a cursory glance, and most
buttons, boxes, icons, and so on. are likely to be influenced by confirmation bias [9], so

The DRE software can be considerably simplified byit remains possible that votes recorded incorrectly by the
moving this layout and rendering functionality into a vote-generation machine would go unnoticed. Even if
separate pre-election component. Instead of a balloyoters are willing to check their votes carefully, the vote-
definition (such as those used by today’s DRES) that listgeneration machine remains in a position to influence
only essential information about contests and candidateyoters during the selection process. For example, the
we propose a ballot definition that describes the entire/ote-generation machine could present the options in a
user interface. For a visual interface, this would includebiased way; it could change the wording of a ballot
prerendered images of the screen and interface elemenf@easure to make an option seem more appealing or
exactly as the user will see them; for an audio interfacegven invert the sense of the question, swapping the
this would include prerecorded sound clips. implications of “yes” and “no”; it could give misleading

There is some precedent for using prerenderednstructions to voters, such as telling them to ignore the
bitmaps in electronic voting machines. For example vote-casting machine or to go to a different polling place.
the ES&S iVotronic uses bitmap ballots [3], which Our proposed architecture therefore targets a broader
help provide flexible support for different languages. security goal: we wish to secure the entire voting user
The ballot definitions we propose contain not just theinterface including the vote selection process, in order to
prerendered images but a complete description of thavoid bias in the election’s measurement of the will of
user interface—the locations where the images willthe electorate. Prerendering the Ul is not incompatible
appear, the transitions from screen to screen, how thesgith a further partitioning of the user interface into two
transitions are triggered, and so on. steps as suggested by the frog voting architecture.

3.3 Prerendering the User Interface

3.5 Electronic Sample Ballot programmers. The hardcopy of the Ul visualization
could also be archived in the records of the election. The

The published ballot definition serves the role of any;isajization alone should be sufficient to reconstruct the
electronic sample ballptanalogous to a sample ballot nierface that voters used at the polls.

in a paper election. Standardizing the file format of the
ballot definition and implementing the VM for consumer)
PCs enables voters to try out the ballot in advance witr3: 7 Anonymous Recording

exactly the same user interface that they will see at thye return now to two security requirements mentioned
polls. This could be used for training voters as well @Spreviously: voter privacy and coercion prevention.
testing the ballot. To protect voter privacy, ballots should be stored
As we mentioned in the preceding section, verifying without any identifying information. The ballots should
the accuracy and fairness of the user interface is criticalg|sg e stored in an order independent of the order in
because the user interface of any voting machine igyhich they were cast, so that someone who observes
in a position to mislead or otherwise influence votersthe sequence of voters entering the polling place cannot

and hence influence the voter input. The publishectorrelate the sequence of voters with the sequence of
electronic sample ballot gives the electiorverifiable stored ballots.

user interfacewhich can be examined and tested by all 1o prevent coercion, voters must not be allowed to
voters, members of the disabled community, usabilitypyt identifying marks on their ballots. In one possible
experts, and accessibility experts. coercion scenario, the coercing party gives each voter
Today, less commonly used ballot designs, such ag unique secret phrase to enter as a write-in candidate.
ballots for voters with disabilities or ballots in alternate For example, suppose Ted tells Alice to vote for Carol
languages, receive significantly less attention, as onlyor President with “moldy explosion” as write-in for
the election office can compose and check electronigogcatcher, and also tells Bob to vote for Carol for Pres-
ballots. A recent, rather alarming example of this lack ofident with “wrinkled tourbus” as write-in for Dogcatcher.
attention occurred at the June 2006 primary election inThen the recorded ballots are no longer publishable

Santa Clara County, where pollworkers discovered thapecause they would enable Ted to confirm, and thus buy,
there was no “continue” button on one of the Chinesealice’s and Bob’s votes.

screens [4], which made it impossible to cast the Chinese One way to resolve this problem is to store each of
ballot. A published sample ballot would have increasedthe voter’s selections as a separate item instead of the
the chances of catching such an error before the electiomntire ballot as a unit. There has been precedent for such
Publishing an electronic sample ballot helps to levela scheme in some paper elections, where the ballots are
the playing field for members of minority communities perforated so that they can be separated into strips, one
and empowers them to play a role in ensuring that thgor each contest, before being counted. If an individual
electronic ballot serves them fairly. voter’s selections cannot be associated with each other,
then the voter cannot use a specially marked selection to
N . L. identify the rest of their ballot. Splitting up the ballot
3.6 Ballot Definition Visualization would conflict with election rules in some states that
Running the ballot definition in a live test might show require the entire ballot to be recorded intact; on the other

that the ballot appears to behave correctly, but it would?@nd; it could be argued that a constitutional right to a

not be a sure way to test the complete behaviour opecret ballot takes priority over state regulations.

the ballot. To be certain that the ballot contains no

hidden behaviour or incorrect behaviour triggered by rare4 Design

combinations of inputs, one would have to examine the

ballot definition file itself. This section describes our current design for a touch-
Therefore, we propose a software tool that transformscreen voting machine based on the above architecture

an electronic sample ballot into a human-readable forthat comes close to the richness and capability of today’s

mat that completely describes the user interface. On#ouchscreen voting interfaces for sighted voters. This

possible visualization would be a flowchart-like diagramdesign supports only a visual interface, but could be ex-

that illustrates the steps of the user interface with thegended to support audio or braille interfaces for visually

prerendered screen images. Anyone would be able tampaired, blind, or deafblind voters.

download the electronic sample ballot, use the program A traditional method of recording the voter’s selec-

to produce a diagram, print it out, and examine it. Thistions is to store a numeric code or a text string identifying

would make possible a new level of assurance: thesach selected candidate. Instead, we store the image

electronic voting Ul could be verified even by non- containing the candidate’'s name exactly as it was shown

to the voter, or for a write-in, the sequence of images of ballot model
the characters selected by the voter, to reduce the risk of _
confusion. contest page
Our design allows the voter to choose one or more int max_sels
. int max_chars target
options from a list of options, which is sufficient to int action
emulate any choice that could be expressed by selecting - int page_i
bubbles or arrows on an optical-scan ballot. We discuss subpage I int contest_i
ways to support ranking of options in Section 7.5. e ——
subtarget option
int action I int contest_i
4.1 Ballot Definition Format
== ——— write-in
The ballot definition is divided into two parts —the int contest_i
ballot modeland theimage library— corresponding to =
the medium-independent and medium-specific informa- review
tion about the voting user interface (Figure 2). The int contest_i
ballot model specifies the interaction sequence, while the —
image library specifies the appearance. —
Separating the ballot model from the image library
reduces the cost and effort of validating changes to image library
the ballot. Replacing the image library is sufficient to int width
adjust the layout or visual style of the ballot, change the int height
display resolution, or translate the interface into another layout 1 [sprite
language, all without altering the ballot model. For these int width
kinds of changes, only the new image library needs to background int height
be validated, not the entire ballot definition. Comparing int width byte[] pixels
two image libraries (for example, to confirm the accuracy bvtol oels
of a language translation) is easier than checking the
correctness of a ballot model. slot
int left
int top
4.1.1 Ballot Model int width
int height
The ballot model consists of an arrayaaintestsan array
of pages and an array a§ubpages

A contestis a question being put to the voters, such as
a referendum on an issue or the.(.election of a candidatgigure 2 Structure of the ballot definition.
(or_several candidates) to a posmo_n. Each co_ntest hagnding with i indicate array indices.
an integer parametenax_sels specifying the maximum
number of selections that a voter may choose (usually
1, but possibly more in contests that allow choosing A targetis a user-triggered transition to another page.
multiple candidates) and an integer parametax_chars In a touchscreen interface, a target appears as a button
specifying the maximum number of characters that carihat the user can press. Optionally, a target can also
be entered for a write-in option. trigger one of the following actions:

The page is the basic unit of presentation. For
example, a single page might display some instructions,
a description of a contest, or a list of available options.
At any given moment, one of the pages is therent An option is an option that the user can choose
page The user interface begins on the first page in thein a particular contest. For example, a contest for
array of pages. When it transitions to the last page, théresident would have one option for each of the eligible
ballot is cast with the user’s current selections. candidates; a referendum contest would typically have

Associated with each page are arraysarfjets op- one option for “Yes” and one option for “No.” Each
tions, reviews andwrite-ing and any of these elements option belongs to exactly one page, though there may
can beactivatedby the user. In a touchscreen interface, be options on different pages that belong to the same
these elements correspond to rectangular areas of thmntest—for example, if the contest has too many op-
screen that are activated by touches. tions to fit on one page. Activating an option toggles

Names

e Clear all the selections in a particular contest.
e Clear all the selections in the entire ballot.

background image

School Board (page 2 of 2)
option (slot 4)

This contest has 7

boxes on 2 pages. / John Selawsky

Choose up to

TWO boxes. write-in (slot 5)

write-in characters (slots 626
Touch a box to / MARIE CURIE WWW
select or deselect

write-in (slot 27)

» write in a candidate

is not yet recorded. Press NEXT PAGE to continue or REVIEW AND FINISH t

-

' our choices and Daliot target (slot 0 target (slot 1 target (slot 2, target (slot 3,
PREVIOUS PAGFW (NEXT PAGE \ (CLEAR THIS \ (REVIEW AND \
Iy JAS Y, I CONTEST VAN FINISH Y,

Figure 3: An example of a selection page with two options currently selected, and its corresponding layout.

it between a selected state and an unselected state. Infathe write-in text already containsax_chars charac-
touchscreen interface, an option appears as a labelled bagrs, activating amPPEND or APPEND2 subtarget has
that changes appearance to show whether it is selectedno effect. If the write-in text is empty, activating an
A write-in is a write-in option. It can be in a APPEND2 Or ACCEPT subtarget has no effect. If the
selected or unselected state, just like a regular optionsubpage is exited by axCCEPT subtarget, the write-in
when selected, it also has an associated list of entere@ption becomes selected and acquires the contents of the
characters. When a write-in is activated, it triggers atextfield. If the subpage is exited bycancEeL subtarget,
jump to asubpagewhere the voter can type in the text the write-in option becomes unselected and empty. Thus,
of the write-in selection. it is not possible for a write-in to contain text yet remain
A review displays the current selections in a particular Unselected.
contest. Activating a review has no effect, though targets Because amcCEPT subtarget only works when there
can overlap reviews. In a touchscreen interface, a reviews Write-in text present, a write-in cannot be simultane-
appears as a screen area (or multiple screen areas) fill@sly empty and selected. The purposeR#END2 is to
in with the option (or options) currently selected in its Prevent a write-in fromappearingempty and yet being
associated contest. For example, a confirmation paggelected. For example, if the keyboard's “space” button
could summarize the voter's selections by presentindS @nAPPEND2 subtarget, then the write-in text cannot
reviews for several contests. consist of only spaces.
A subpageis a temporary page for entering a write-in.
A subpage is like a subroutine call, but only one levels 12 |mage Library
deep —the only possible transition is back to the current
page. In a touchscreen interface, a subpage provideBhe image library consists of an arraylafoutsand an
a text field and an on-screen keyboard for the voter taarray ofsprites and also specifies the screen dimensions
type in the name of a write-in candidate. The numberin pixels.
of subpages is determined by the contests: there is one A layout consists of a background image and an array
subpage for each contest that contains a write-in. Aof slots Each page or subpage corresponds to exactly

subpage contains an arraysafbtargets one layout, and vice versa. glot is a rectangular region
A subtargettriggers one of these actions: of the screen where a sprite can be pasted or where a
touch will have an effect.
e APPEND a particular character to the text field. A sprite is an image smaller than the screen size
o APPEND2: if the text field is not empty, then append that is meant to be pasted into a slot on a background
a particular character to the text field. image. The array of sprites contains images of options

and write-ins in their selected states, images of characters
e DELETE the last character.) o .

that can be typed into a write-in, and the image of the text
e CLEARallthe c.har_acters. entry cursor shown while entering a write-in. To keep the
e ACCEPT the write-in text and return. DRE software as simple as possible, allimages are stored
e CANCEL the write-in text and return. uncompressed with 3 bytes per pixel.

background image

Write-in Candidate for School Board

CLEAR DELETE
subtarget (slot 0) write-in characters (slots 33-53) subtarget (slot 1)

() / MARIE 0 (mncrsmcr) Hllllllwclmslmlsimlel 110

character sprites

APPEND subtargets (slots 4-31

)

YA Y Y Y Y Y Y Y
EUEEHHEOEEE LM OEEOEE
AN R N W D W A U A A

CNXC DNXCDNCDDCODCDDCDCOC O

HEEEOEOEO0 MR EEHOERC
A N A W D W N R N

YA YR Y Y YS YR

Lz x|lc|]lVv] B|IN|IM]| DDDDDDD

L

APPEND2

e N
(| subtarget (slot 32)
N’

SPACE
A _4

CANCEL subtarget (slot 2) ACCEPT subtarget (slot 3)

s Y s R
| CANCEL THIS WRITE-IN | | ACCEPT THIS WRITE-IN |
. J . J

Figure 4: An example of a write-in subpage with a few characters entered, and its corresponding layout.

In a layout corresponding to a page, the slots cor- e Targets, options, write-ins, and reviews refer to
respond to the targets, options, write-ins, and reviews contests. This is necessary to allow options, write-
for that page. Each target has one slot, specifying the ins, and reviews to be freely arranged among the
touch region that activates the target; the image of the pages, so there can be multiple contests on a single
target button (or other widget) is part of the background page or multiple pages for a single contest.
image. Each option has one slot, which specifies both its) o .
touch region and also the position for pasting the sprite 1 1€Se references are stored as integer array indices in
showing the option in its selected state. The image of théhe bal_lot_ definition because |t_ is simpler to_venf;_/ that_an
unselected option is part of the background image, and'de is in range than to verify that a pointer is valid.
when the option is selected, the sprite is pasted over il’.A‘” _oﬂ_\er asspuayons between elements of the ballot
Each write-in also has a sprite for its selected state, whic/f€finition are implied through structural correspondence.
would typically look like a selected option but with space FOF instance, if there arg pages and, subpages, then
provided for the write-in text. A write-in has one slot there are exactly + ¢ layouts in the layout array, where
for its touch region and for pasting the selected write-inth€ firstp are for pages and the lagtare for subpages.
sprite, andnax_chars more slots specifying the positions This use of corresponding array |_nd|ces avoids the need
where the entered characters are to be pasted. Eaéﬂr Pages or layouts to'contaln pointers to each othgr.
review hasmax_sels groups of slots (for displaying up S|m|!arly, thg meanings of the slots are determined
to max_sels options selected by the voter). In each groupPY their order in the slot array. The slot array for a
of slots, there is one slot for pasting the selected optiof?@3€ contains, in order, one slot for each target, then one

sprite andnax_chars slots for displaying the write-in text SI0t for éach option, them + max_chars slots for each
if a write-in is selected. write-in, thenmax_sels x (1 + max_chars) slots for each

In the layout corresponding to a subpage, the slotdeview. The slot array for a subpage contains one slot
correspond to the subtargets and character slots for tHQ" €ach subtarget followed byax_chars slots for the
page. Each subtarget has one slot, the touch regiofntered text.

that activates it. Additionally there areax_chars slots The sprite array contains one sprite for each option

specifying the positions where the entered characters af@d Write-in, in the order they appear among the pages,

to be pasted. followed by, for each subpage, a character sprite for each
APPEND O APPEND2 subtarget and one cursor image
sprite.

4.1.3 Referential Integrity

To simplify verification, the ballot format minimizes its 4.1.4 Well-formedness and Validity

use of pointers and other kinds of references. Thereare = _)
only two kinds of references in these data structures: We distinguish two different notions of the correctness
of a ballot definition. A ballot definition isvell-formed

e Targets refer to the page they transition to. Thisif it satisfies the assumptions made by the virtual ma-
is necessary to allow for multiple outgoing and chine implementation. A ballot definition iglid if it
incoming transitions to and from each page. represents an acceptable user interface for voting.

Because the ballot definition must be well-formed e Before casting the ballot (arriving at the last page),
in order for the VM to read it and operate safely and the user must be shown pages that contain reviews

correctly, a verifier in the voting machine checks for for all the contests.

well-formedness before accepting a ballot definition
To be well-formed, a ballot definition must meet the
following conditions:

confusion in the user interface:

"The ballot design tool could provide guidance, enforce
validity conditions, or give notification when validity
conditions are not met.
e There is at least one page and one contest.
e There is one subpage for each contest that containg 2 V/irtual Machine
a write-in.
e There is one layout for each page or subpage.
e Every index referring to a page or contest is in
bounds for its respective array.

The VM is composed of four software modules: the
navigator, thevideo driver theevent loop and thevote
recorder (Figure 5). This separation does not in itself
o prevent attacks, as the corruption of any module still
* Every target or subtarget has a vadidion. has the potential to corrupt the outcome of the election.
e Every layout contains the correct number of slotsRather, the separation into modules is an instance of de-
to match its page or subpage, as described irsign for verification. Establishing limited responsibilities

Section 4.1.3. for each module and limited data flows among modules
¢ All background images match the screen size. facilitates the auditing and testing necessary to eliminate
e All slots fit entirely within the screen bounds. vulnerabilities to attack.

The navigator walks through the pages in the ballot
sprites, and write-in sprites associated with theModel, always starting on the first page. It keeps track
same contest have the same size. of the current page, the user’s current selections, the
e All character slots, character sprites, and cursorCurrent subpage (if any), and the entered characters on
' ' the current subpage (if any). The navigator responds to

sprites associated with the same contest have the ;
: Just one message:
same size.

e The image library contains the correct number of e When told toactivate a slot, the navigator takes
sprites to match the ballot model, as described in the action for the corresponding target or subtarget,

Section 4.1.3. toggles the corresponding option, or transitions to
the subpage for the corresponding write-in.

o All option slots, write-in slots, review slots, option

Validity, on the other hand, does not have a single
definition because it depends on election regulations thathe navigator issues three kinds of messages to other
can vary by locality. The following are some examplesmodules:

of conditions for validity that we expect to be common,

as they prevent some obvious pitfalls and sources of ® 't télls the video driver togoto a layout upon

transition to a page or subpage. The message

specifies the layout index.

e Target, option, write-in, and review slots do not o |t tells the video driver tgaste sprites into slots as
overlap each other, except that target slots may necessary to display options, write-ins, reviews, and

overlap review slots. write-in text. The message specifies the sprite index
e Character slots do not overlap each other and fit and slot index.
inside their corresponding write-in or review slot. o Ittells the vote recorder tarite the selections when

e Character slots in write-ins and reviews are the ballot is cast (when transitioning to the last
arranged in the same relative positions as the page). The message contains an arragaf_sels

character slots on the corresponding subpages. selections for each contest. Each selectionis a list of
e The user is never trapped in a subgraph of pages, integers: for a selected option this is a single integer,
except after arriving on the last page. the index of the selected sprite; for a write-in, this
e The last page contains no target, option, write-in, or 'S the index of the selected sprite f0||0W9d by the
review slots. indices of the entered character sprites.

e There exists some transition path from the first page Thevideo driver has only one piece of state: it keeps
to every other page. track of which layout is the current layout. It interprets

e Every subpage contains anccCePT subtarget, the slot index in gaste command in the context of the
a CANCEL subtarget, and at least omePPEND current layout. The video driver handles three kinds of
subtarget. messages:

ballot definition LEGEND

one-way data flow
—_—

image library ¢ | ballot model

7

data
goto(layout_i) = ee—S— ——— | TOOTRARIARRRRRAT
aste(sprite_i, slot_i . j i
frame buffer video driver P (sprite. D navigator write(selections) vote recorder
software
module
Iocate activate(slot_i)
JRSESECENES AN . hardware
Xy | i device
touch sensor | event loop | cast vote records !

Figure 5: Block diagram of the virtual machine, which consists of the four software modules in bold. The arguments
layout_i, sprite_i, slot_i, x, andy are integersselections is an array of arrays of lists of integers.

e When told togoto a layout, the video driver copies Our prototype uses Pygame [11], an open-source multi-
the background image into the frame buffer andmedia library for Python, to handle graphics and mouse
remembers the given layout index. input. It runs on a commodity PC using the video display

e When told topaste a sprite into a slot, the video and the mouse to simulate a touchscreen device.
driver copies the sprite into the frame buffer at the The prototype reads the ballot definition from a file
position specified by the slot. namedballot and writes vote records to a file named

e When told to locate a given point by its votes . Theballot file represents read-only media

co-ordinates, the video driver looks through the@nd is opened read-only; thetes file represents a
slots in the current layout and returns the index of PROM. Each time the program runs, it casts at most one

the first slot that contains the point, or a failure Pallot, then enters a terminal state.

and review, the target slot will be returned becausePlace in a real election as follows. Creating an empty
targets come first.) votes file corresponds to opening the polls at the begin-

ning of election day with a blank PROM. Restarting the
Theevent loopreceives touch events from the screen’sprogram corresponds to activating the voting machine
touch sensor. We assume that when the user touchder a single voter. We assume that only the pollworker
the screen, the sensor repoftsy) coordinates in the has the ability to restart the machine, so pollworkers
same coordinate space used for displaying images. Upogan ensure that each voter only votes once. Setting the
receiving a touch event, the event loop asks the videwotes file read-only corresponds to closing the polls
driver tolocate the corresponding slot, then passes theand removing the PROM.
slot number on to the navigator in antivate message. The source code for our prototype implementation
The vote recorder records the voter's selections in and a sample ballot definition file are available online at
non-volatile storage upon receiving varite message http://zesty.ca/voting/
from the navigator. The votes are recorded using a
tamper-evident, history-independent, subliminal-free N .
storage method. Molnar, Kohno, Sastry, and Wagnet5'1 Ballot Definition File
have proposed several schemes with these properties [4] separate Python module, not shown in Figure 5, reads
for storing ballots on a programmable read-only memorye pajior file, verifies all the conditions necessary to
(PROM). Each stored selection includes or indicates itgjetermine that it is well-formed, and deserializes it to
associated ballot definition so that the meaning of theobjects in memory. All integers in the file are stored as

selections is apparent from the storage contents. 4-byte unsigned integers; images are uncompressed with
3 bytes (red, green, and blue) for each pixel.
5 Implementation The prototype does not include any user interface

for selecting which ballot definition to use; instead, it
To evaluate the feasibility and complexity of our voting assumes that the appropriatgiot file will be present
machine design, we built a prototype implementation inwhen the program starts. Differelpallot files can be
Python [12] that runs on Linux, MacOS, or Windows. used for different runs.

. first flag indicates start of valid list of votes
before recording

| erased (all zeroes) |l> | old sorted list | unused (all ones) |

writing new list in progress

| |l>| old sorted list | |l>| new se |
erasing old list in progress

| g}ted list | | P | new sorted list | |
recording complete

| | P’ | new sorted list | |
]

maximum space that could have been used to store all '

preceding lists, regardless of order in which votes were cast

Figure 6: Storing votes in a copyover list. The list is always written in sorted order and the amount of erased space
preceding the list is independent of the size of previous lists, so that no information is revealed about the order in
which votes were cast. On a PROM, changing a bit from 1 to O is an irreversible operation.

Note that the selection of a ballot definition can be For this prototype, we have chosen to store the bal-
divided into two parts: choices that have to be authorizedots using acopyover list[7], because it is history-
by the pollworker (such as choosing which precinct'sindependent, simple to implement, and does not depend
ballot to use) and choices that the voter is allowed toon a random number generator. A copyover list is a
make (such as choosing a preferred language). Thest of items stored in sorted order; each time we add
former type of choice can be implemented by havingitems to the list, we write a new copy of the entire list
the pollworker select theallot file. The latter type in sorted order and erase the old copy by overwriting
of choice can be implemented either by having theit with zeroes. Because the items are stored in sorted
pollworker select a ballot definition file at the voter’s order, the list does not reveal the order in which the items
request, or by combining multiple ballots into a single were added. A copyover list usé(n?) space in the
ballot definition. For example, a ballot could support number of items, but previous analysis [7] shows that
both English and French by including all the pages foronly a modest and inexpensive amount of storage would
an English ballot and all the pages for a French ballotbe required to handle all the votes that could be expected
with a starting page to let the user choose between thento be cast on one machine in one day.

We leave open the question of how the pollworker’s The items in the copyover list are the individual selec-
selection would be implemented in hardware. Onetions within each contest from all the voters. Each item
possibility would be for the ballot definitions to be consists of the SHA-1 hash [8] of the ballot definition,
stored on individual write-protected memory cards; tothe integer index of the contest, and the integer index of
support voting for multiple precincts, a pollworker would the selected option sprite. For a write-in selection, this is
insert the appropriate precinct's ballot definition card tofollowed by the indices of the selected character sprites.
activate the voting machine for a single voting sessiona|| integers are stored as 4-byte unsigned integers. The
Alternatively, all the ballot definitions could be stored on individual selections are stored as Separate items so that
the machine in advance, and the pollworker would usehe votes file can be published without letting voters
some other means to choose one when starting each n@wark their ballots to prove how they voted, as explained
voting session. In either case, our software prototypen Section 3.7.
models this step simply as having the authorized choice

, Because the items in the list can vary in length, the size
of ballot file be present when the program starts.

of the list depends on the contents of the selections. If the
new list were stored immediately after the old list, the
5.2 \ote Storage File size of the erased space would reveal something about
the size of the old list and hence about the sequence
Thevotes file is used to simulate a PROM, a solid-state of votes. (For example, if two selections are stored,
storage device initially filled with 1 bits; writing to a one with a short write-in and one with a long write-
PROM can change 1 bits to 0 bits, but never the reversen, then casting the long one first would yield a larger
The vote recorder writes to the file in a manner consistenerased space than if they were cast in the opposite order.)
with this property. Therefore, we always erase the maximum amount of

space that would have been required, regardless of theense for an implementation where the machine provides
order in which the selections were added to the list. some way for the pollworker to select which ballot
A flag value is stored at the beginning of each list, anddefinition to use.
the list is encoded so that it cannot contain the flag value. If the list of acceptable ballot definitions is fixed in
The first occurrence of the flag in the file is consideredadvance, it would be possible to use just one storage
to signal the start of the current list of votes. After the device instead of two. The storage medium would
new list is written, erasing the flag in front of the old initially contain all the ballot definitions; the machine
list commits to the new list, as shown in Figure 6. This would both read the ballot definitions from it and append
commitment is atomic, because changing even one bithe vote records to it. In such an alternative scheme,
invalidates the flag. vote records could not become inadvertently separated
from their ballot definitions, but it might be more difficult
to provide a hardware-based guarantee that the ballot
definitions are never alterable.

For a stored selection to have well-defined semantics, it
must be somehow associated with a ballot definition. Weg Evaluation
considered four ways to do this:

5.3 Interpreting Recorded Votes

1. Store an entire copy of the ballot definition with 6.1 Size

each selection. The entire prototype implementation is 293 lines long,
2. Assume a pre-established global mapping of idenhnot including comments and blank lines. The breakdown

tifiers to ballot definitions; store an identifier with of module sizes is as follows:

each selection.

3. Store a cryptographic hash of the ballot definition ballot definition loader and verifier 126 lines

. . event loop 13 lines
with each selection. . .
o navigator 94 lines
4. Store an array of ballot definitions, then store an \;ijeq driver 22 lines
array index with each selection. subtotal (user interface) 255 lines
vote recorder 38 lines

The first scheme is simple, but uses a lot of storage
space. At a resolution of 1024 by 768 pixels, a back- total 293 lines
ground image for a page occupies about 2.4 megabytes;

a typical ballot definition is on the order of 10 to 100 6.2 Dependencies

megabytes. Storing a few hundred votes would require
sevgeralyz:]igabytes ng space. g Our prototype runs on Python version 2.3. We have tried

The second scheme uses very little space, butdepen&% minimize the dependencies in our implementation

on management of a global namespace of ballot defini¥® that the size of the Python code gives a reasonable

tion identifiers, which might be brittle and error-prone. If |nd|cat||on of the”trutg cotmple>t<gy gf ttr:]e pl.rof]rir:th Wi
a vote record says that it belongs to ballot definition #34US€ only one cofiection type, the Fython fst. 1oug
ome lists change length during runtime, every list has

and there is a disagreement about which ballot definitior? . :
was #34, the vote record becomes meaningless. an upper bound on its length determined by the ballot

We chose the third scheme for our prototype becausgeﬁnition’ so an implementation based on arrays could
it is space-efficient, and as long as the hash fun(:tiorprealloc'elte the necessary space.
is collision-resistant, there can be no ambiguity about
which ballot definition is associated with each vote 6-2.1 User Interface Modules
record. However, in order to ascertain_ the true meaningrhe user interface modules import nothing from
of a vote, one must otherwise obtain a copy of thepyihon's standard library and use only the following
ballot definition. Our architecture assumes that the ballobuilt-in functions:
definitions are published, so this is not a serious problem.

The fourth scheme stores the actual ballot definitions, e open andread on the ballot definition file.
yielding a vote record that is fully self-contained. Butin e ord to convert characters to integers.
order to store all the definitions on write-once storage, o enumerate andrange for iterating over lists.
without revealing any information about the order in
which they were used, and without using very large
amounts of space, all the acceptable ballot definitions The only Pygame drawing function that we uselis,
must be known in advance. This scheme would makevhich copies a bitmap onto the screen.

len and theremove method on lists.

6.2.2 Vote Recorder Module 6.4 Separation of Concerns

The vote recorder uses Python’s builtsina module for ~ Our prototype is divided into five modules that can be
computing the SHA-1 hash of the ballot definition, and implemented and inspected separately. Each module has

also the following built-in functions: a limited responsibility, which makes it easier to audit
and test.
e open, read, write , seek, andtell on the vote storage The ballot definition loader is responsible for estab-
file to simulate access to a PROM. lishing that the ballot definition is well-formed. If the

loader is implemented correctly, and if the other modules
rely only on the conditions of well-formedness, then
the only possible kind of software failure is a failure to

e ord andchr to convert characters to integers.
e enumerate for iterating over lists.

e Thesort method to sort the copyover list. load the ballot definition. Successful completion of the
¢ len andmax to find the longest item in the copyover loading and verification step assures that software errors
list. cannot occur during the voting session.

Itis easy to see by direct inspection of the source code
that all modules other than the event loop only react to
6.3 Functionality messages they receive. The event loop is the only module
capable of initiating messages, but it is also the smallest
Our design allows a wide range of possible ballotand easiest to audit.

formats. For instance, our prototype can support: The video driver is a passive component, never send-
ing any messages at all. In particular, the video driver
e both general and primary elections does not have the authority to activate slots (that is, it

cannot “press buttons” in the interface), which lessens
our vulnerability to errors in its implementation.

The navigator has access to only the ballot model and
cannot draw arbitrarily on the display. Because it cannot

e ballots in any language and any typeface
e voter instructions at any point in the process
e multiple contests on a single screen

e splitting a contest over multiple screens see the image data, it cannot determine the semantics
e contests allowing more than one selection of the user’s selections. Freezing the implementation
¢ photographs or logos shown with candidates of the VM before choosing the order of candidates on
e write-in text in any alphabetic language the ballot would make it difficult for even the author of

the navigator to bias the vote for or against a specific
candidate. Also, the only input to the navigator is a slot
number, which is a small integer, so the navigator can be
) .) ~ subjected to exhaustive testing.

e regulations requiring voters to review their The yoting machine has no non-volatile storage other

e review of selections before casting the ballot

e jumping directly to specific contests or review
screens

selections before casting the ballot than the ballot definition and the cast vote storage.
e regulations restricting the number of times thatBecause the machine is restarted for each new voting
voters may review their selections session, and because the ballot definition is read-only,

the only state retained between voting sessions is the

Because our implementation of write-ins assumes thavote storage. Furthermore, the vote recorder module
each character is selected with a single keypress on thenly receives messages and never sends any messages
touchscreen, it can only support alphabetic languagedp any other software module, so no information in
write-ins in ideographic writing systems such as Chinesghe vote storage can reach any of the other modules.
are not supported. Consequently, the user interface seen by each voter

Our design does not support an audio interface ofS determined only by the ballot definition and cannot
a printed record; these are discussed in Section 7. [feveal any information about previous voting sessions.
does not support straight-ticket voting, ranked voting,AlSO, this ensures that all voters using the same ballot
cross-endorsed candidates, automatic ballot rotation, di€finition receive the same voting experience.
generation of audit logs, though it could be extended to

include these features. . N . 6.5 Election Rules
Our prototype does not provide administrative func-

tions such as viewing vote counts or changing configuElection regulations concerning the ballot are upheld
ration settings. It also does not perform encryption; byeither by the implementation of the navigator module or
design, there is no need to encrypt the stored votes. by validating the ballot definition.

By design, our prototype can only cast one ballot eachmultiply its size by a factor of 3 or 4, but not by 100.
time it runs. It is easy to confirm by inspection of the Despite its small size, our prototype maintains clear
navigator that the only way to cast a ballot is to arrive atboundaries and minimal data flow among its five mod-
the last page and to see that the last page is a terminales. As described earlier in this section, many of the
node in the ballot definition. desired security properties of the voting machine are
It is also straightforward to verify that overvoting is straightforward to verify in our prototype, due to its
impossible, because only the navigator can manipulatéesign. The AccuVote TS code does not lend itself to
the user’s selections, and there are only two places in theimilarly easy analysis.
code where an item is added to the selection list.
Other election process rules can be verified by examin-
ing the ballot definition. For example, to ensure that the7 Open Issues
voter will be notified of undervotes before casting the _))
ballot, we would check the graph of transitions among NS Section sketches out some of our ideas for ways
pages to see that the voter must proceed through revief 2dd important missing functionality to our design.

pages before arriving at any page that can cast the balloPur intentiqn is to show that the basic architecture we
have described does not pose fundamental obstacles to

_ adding these essential features, not necessarily to present
6.6 Comparison optimal solutions for achieving them.

At only 293 lines of Python, our prototype code is much

smaller than the 31,000 lines of C++ in the AccuVote TS.7.1 Accessible Interfaces

It may be slightly more appropriate to compare our 255) o

lines of Ul code with the AccuVote’s 14,000 lines of Ul Oné way to provide an audio interface would be to

code — but neither comparison is entirely fair, becauseé?dd asound libraryto the ballot definition, containing

our prototype lacks some of the AccuVote’s functionality Prérecorded audio clips of spoken instructions, contest

and the two systems have different sets of dependenciedeScriptions, and candidate names. A new module, the

Nonetheless, the correctness of our code is certainlfudio driver, would play clips from the sound library

easier to assure than the correctness of the AccuVote T4PON request by the navigator.

code. In general, programs with less code tend to be The event loop would handle user input from hardware

easier to review, easier to test, less likely to contain bugsPuttons, and the ballot definition would specify addi-

and less likely to crash. tional targets for handling button presses. Extending the
One reason that we have less code is our choice dgvent loop to support hardware buttons would also be a

programming language. Our prototype requires a Pytho/@y to support alternate input devices for voters with
interpreter, whereas the AccuVote TS does not. orPhysical disabilities; the voting machine could provide
the other hand, the AccuVote TS software depends oft Standard hardware interface for plugging in a wide
Microsoft Windows CE and builds its user interface Variety of switch inputs.

using the Microsoft Foundation Classes, which are much C€ombined video and audio interfaces can be very
larger and more complex that thét functionality we helpful for users with impaired vision and we aim to

use from Pygame. provide synchronized.video and audio in our future work

It is not unreasonable to consider running Python orPn &n accessible design.
voting machines. Python is widely deployed and vetted Although the majority of blind individuals do not
and is supported by an active developer communityUse braille, a braille interface would provide access to
Unlike Windows CE and MFC, Python is a mature Opendeafblind voters and improve access for those who prefer
source project, distributed with an extensive suite of rebraille. This might be implemented with the addition of
gression tests. As a data point concerning Python’s siz@inother ballot definition component containing data to be
note that Nokia has released a Python interpreter [10§ent to a braille display.
that fits in a 504-kilobyte installation package, which
also includes over 40 Python library modules that we do7_2 Printing
not use.

Alternatively, the Python code could be translated intoOur design could be extended to produce a voter-
a compiled language. Although we did use a higher-levelerifiable ballot record by adding a print driver module
language, we have been careful to minimize our usehat controls the printer. For a DRE with a prerendered
of Python’s library modules and built-in functions, as user interface, the printout might contain either the exact
described in Section 6.2. It is reasonable to expect thaitmages that the voter saw or printed text representing the
translating our code into a compiled language wouldvoter’s selections.

For a graphical printout, the print driver module would elections. For example, San Francisco’s ranked bal-
have access only to the image library, and would tell thdots show the same list of candidates in each of three
printer to print the sprites that the user selected. columns; voters are instructed to indicate their first

One way to support a text printout would be to addchoice in the first column, second choice in the second
a dictionary component to the ballot definition that column, and third choice in the third column. However,
associates each contest and sprite with a string. Only theince our existing prototype knows nothing about the
print driver module would have access to the dictionary;semantics of ranking, it cannot warn the voter about
it would send these strings to the printer to describe thénvalid rankings.
user’s selections. To provide proper ranking support, our design could

be extended to include images of numbers in the image
7.3 Audit Logging library apd to displa'y.rilumbers. next to raqked options.
The navigator could initially assign successive rank num-
The division of the software into modules makes commu-bers as the voter makes multiple selections; to reorder
nication among the modules a natural place to introducéhe rankings, the voter could clear the contest and start
audit logging. An audit log would record the ballot again or press special targets to increment and decrement
definition together with the sequence of all the messagetanks. Alternatively, a subpage with a numeric keypad
sent between modules. The audit log would not normallycould be provided for typing in the rank numbers.
be published, but in the event of a dispute, it could be
used to replay the user interaction sequence to reve
both software errors and voter errors. Note that to protec
voter privacy, the interaction sequence for each user musp/e have not yet built the design tool for producing the
be protected in the same fashion as the actual ballots casjallot definition or the visualization tool for verifying
ballot definitions. The existence of the ballot definition
7.4 Straight-Ticket Voting as a separate qrtifact opens up pos_sit_)ilities fqr inj[eresting
new research in automated description, validation, and
The basic concept of straight-ticket voting can be im-evaluation of user interfaces. The design tool is in
plemented by providing a target with an action that setsa position not only to check for validity according to
all the user’s selections to a preconfigured state, thougklection regulations, but also to compute measures of
election rules may affect whether and how voters shouldusability and accessibility and provide guidance to the
be able to specify exceptions to these presets. The desidrallot designer during the layout process.
of such a feature will depend on research into the various
rules for straight-ticket voting in different jurisdictions.

.6 Ballot Definition Tools

8 Conclusion

7.5 Alternate Election Methods We have presented an electronic voting machine ar-
chitecture capable of offering much stronger levels of
assurance in both its software implementation and its

. . . user interface with considerably less verification and
which each voter votes for a single candidate and the can-___. - : :
esting effort compared to an existing electronic voting

didate with the most votes wins. Despite its IOOIOUIarity’system. Our architecture also provides broader public

!t is a poor method for ellectmg a single winner becauseaccess to the verification process and has the potential
it underrepresents centrists and often motivates voters t% level the playing field for voters with disabilities

misrepresent their preferences [6], locking in polarlzedand other minorities. In addition, we have presented

two-party control of the government. e : . ;
One simple wav o obtain a truer representation Ofa specific design for a touchscreen voting machine and
simple way : u bres ' have demonstrated that it can be implemented in a

voter preferences is approval .vot|ng, in which each VOtersmaII fraction of the amount of code in current voting
can vote for as many candidates as they want. A

"hachines.
approval election is easily conducted with our prototype

by settingmax_sels equal to the number of candidates.

Other improved election methods, such the Schulzéd Acknowledgements
method [13] or the Tideman method [14], use voters’
rankings of the candidates to achieve a fairer resultWe thank David Dill for enlightening discussions about
Our current design does not directly support ranking ofdesign for verification; the categories “program verifi-
options, though ranking could be crudely implementedcation” and “result verification” were suggested by him.
by repeating the same list of options, as in some papeWe thank David Jefferson for bringing the importance

Most single-winner elections decide the victor by the
plurality rule (also known as “first past the post”), in

of interoperability to our attention and Dan Wallach [14] T. Nicolaus Tideman. Independence of Clones as a
for pointing out that bitmaps are already used by some Criterion for Voting Rules. Social Choice and Welfaye
machines. We are grateful to Scott Luebking for his 4:185-206, 1987.

helpful advice on several usability and accessibility con-[15] U. S. Election Assistance Commission.EAC 2004
siderations. Finally, we thank the anonymous reviewers Annual Report http://www.eac.gov/docs/

of this paper, who provided many useful suggestions for ~ EAC%20Annual%20Report%20FY04.pdf

its improvement.

This research was funded in part by NSF CNS-
0524252.

References

[1] 107th U. S. Congress. Help America Vote Act of 2002.
http://www.fec.gov/hava/law_ext.txt

[2] Shuki Bruck, David Jefferson, and Ronald L. Rivest.
A Modular Voting Architecture (“Frogs”). Workshop
on Trustworthy Elections, 200http://www.vote.
caltech.edu/wote01/pdfs/amva.pdf

[3] Douglas W. Jones. Recommendations for the Conduct
of Elections in Miami-Dade County using the ES&S
iVotronic System. http://www.cs.uiowa.edu/
“jones/voting/miami.pdf

[4] Arthur Keller. Experiences with Sequoia AVC Edge with
VeriVote Printer as Precinct Inspector in Santa Clara
County. http://gnosis.python-hosting.
com/voting-project/June.2006/0081.
html .

[5] Tadayoshi Kohno, Adam Stubblefield, Aviel D. Rubin,
and Dan S. Wallach. Analysis of an Electronic Voting
System. InProceedings of the IEEE Symposium on
Security and Privacy2004.

[6] Samuel Merrill. Making Multicandidate Elections More
Democratic Princeton University Press, 1988.

[7] David Molnar, Tadayoshi Kohno, Naveen Sastry, and
David Wagner. Tamper-Evident, History-Independent,
Subliminal-Free Data Structures on PROM Storage -
or- How to Store Ballots on a Voting Machine. In
Proceedings of the IEEE Symposium on Security and
Privacy, 2006.

[8] National Institute of Standards and Technology.
FIPS 180-1: Secure Hash Standard. April 1995.
http://www.itl.nist.gov/fipspubs/
fip180-1.htm

[9] Raymound S. Nickerson. Confirmation Bias: A
Ubiquitous Phenomenon in Many GuiseReview of
General Psychology2(2):175-220, 1998.

[10] Nokia. Python for Series 60http://www.forum.
nokia.com/python

[11] Pygame http://pygame.org/

[12] Python Software Foundation. Pythohttp://www.
python.org/

[13] Markus Schulze. A New Monotonic and Clone-
Independent Single-Winner Election MethodVoting
Matters (17):9-19, October 2003.

