
Passpet: Convenient Password Management
and Phishing Protection

Ka-Ping Yee
University of California, Berkeley

ping@zesty.ca

Kragen Sitaker
kragen@pobox.com

ABSTRACT
We describe Passpet, a tool that improves both the conve-
nience and security of website logins through a combination
of techniques. Password hashing helps users manage multi-
ple accounts by turning a single memorized password into
a different password for each account. User-assigned site
labels (petnames) help users securely identify sites in the
face of determined attempts at impersonation (phishing).
Password-strengthening measures defend against dictionary
attacks. Customizing the user interface defends against
user-interface spoofing attacks. We discuss how these tech-
niques are integrated into a single tool and compare Passpet
to other solutions for managing passwords and preventing
phishing.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]:
General—Security and protection; H.3.5 [Information
Storage and Retrieval]: Online Information Services—
Web-based services; H.4.3 [Information Systems Ap-
plications]: Communications Applications—Information
browsers; H.5.2 [Information Interfaces and Presenta-
tion]: User Interfaces—Graphical user interfaces

1. INTRODUCTION
Passwords are the most commonly used type of authen-

tication on the Web, but they have many usability prob-
lems and security weaknesses. Password security depends
on choosing passwords that are unique and hard to guess,
yet long passwords can be difficult to remember and re-
type correctly. The passwords that are easiest to choose
and memorize tend to be vulnerable to dictionary attacks,
in which an attacker tries to guess the password by con-
structing likely possibilities from lists of words and common
passwords. Changing passwords frequently helps to resist
attack, but makes the task of memorizing passwords even
harder. Using the same password or related passwords at

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SOUPS2006, Carnegie Mellon University, Pittsburgh, PA
Copyright 2006 ACM 0-12345-67-8/90/01 ...$5.00.

Click on Passpet icon

Username and 
password are filled in

Figure 1: One click on the Passpet button fills in a
login form with a site-specific password.

multiple sites compromises password secrecy, yet memoriz-
ing a different password for every site imposes an unrealistic
burden on human users. Password login forms are also vul-
nerable to phishing attacks, in which the user is fooled into
entering a password at an imitation site. Some of the more
sophisticated phishing attacks also corrupt or mimic parts
of the browser’s user interface to mislead the user about a
site’s true identity.

Passpet improves upon and combines several previously
devised techniques — password hashing, petnames, pass-
word strengthening, and UI customization — to mitigate
all of the problems just mentioned, helping users manage
website logins both more conveniently and more securely.
Whereas most other solutions improve password security at
the cost of some extra effort to log in, Passpet improves pass-
word security while making the process of logging in more
convenient. With Passpet, the user clicks a button to fill in
a password, in login forms (Figure 1) and in other contexts.

As with any system that tries to address many competing
requirements, Passpet incorporates some tradeoffs in its
design. Passpet makes logging in more convenient at the
cost of a more involved process to change the user’s secret; it
reduces the user’s memory burden at the cost of introducing
an external dependency; it supports non-SSL sites at the
cost of some risk if non-SSL site passwords are intercepted.
We have made these tradeoffs in a way that we believe
improves security and usability for most users, keeping in
mind that phishing attacks and dictionary attacks tend to
be high-volume attacks.

In addition to describing Passpet as a specific point in
the design space, this paper also contributes some ideas in
secure interaction design that are separable and could be



reapplied in other contexts:

• Using user-assigned site labels for password hashing.

• Continuously estimating the dictionary-attack time
while the user enters a new password.

• Variable levels of password strengthening, configured
by the user simply by waiting.

• Associating a security tool with a persona that differs
from user to user.

• Customizing the button for activating a security tool
in order to prevent spoofing.

Below, we will describe in more detail how these techniques
are applied in Passpet, how Passpet generates passwords,
how the usage of Passpet fits in with current practices, and
how Passpet’s security and usability compare to existing
alternatives.

2. PROBLEM AND GOALS
In the following discussion of the problems surrounding

passwords, we identify several goals for a password tool.
In the current password regime, the security goal of

keeping passwords different from site to site competes with
the limitations of human memory. Users tend to reuse
passwords because memorizing many passwords is difficult
and choosing many passwords is inconvenient. We would
like the user to only have to memorize one secret instead
of many, but still have a unique password at each site to
reduce the user’s vulnerability in the case of a break-in at
one account or a malicious administrator at a site hosting
an account.

Because any human-chosen secret is likely to have much
less entropy than a truly random secret, we would like to
provide a defense against dictionary attacks on such secrets.
Since offline dictionary attacks depend on computational
speed, we would also like this defense to remain effective
in future years as faster computers become available.

The reason phishing works is that users are constantly
asked to enter passwords without a convenient, reliable way
to know whom they’re giving their passwords to. The user
interface they use to enter secrets is completely controlled
by an unidentified party. Today’s login forms train users
to be excellent targets for phishing attacks. Any effective
phishing solution must provide a way to identify the other
party and must get users out of the habit of giving secrets
to strangers. Some attacks try to fool users by imitating
login forms, and some attacks imitate parts of the browser’s
user interface; we would like to address both of these kinds
of attacks.

For robustness and flexibility, we would like our password
scheme to avoid centralized external dependencies. We also
prefer not to store the user’s passwords, in order to reduce
the user’s exposure to risk in the event of theft or break-in
of a system where passwords are stored.

We must also consider several compatibility and deploy-
ability constraints for a password tool. We assume that it
is impractical to require websites to change their login func-
tionality to accommodate a new tool, and further that it is
impractical to expect users to migrate all their accounts to
a new scheme at once. Currently, users can change their
passwords at individual sites; we want users to still have

this ability and to be able to use sites that require peri-
odic password changes. Also, users can currently log in to
websites from anywhere — such as from a computer at the
office, from a friend’s computer, or in an emergency while
travelling. Retaining this ability is important.

Finally, we note that any password management tool will
require some changes in user behaviour, however slight. Vol-
untary adoption of a tool will be much less likely if it offers
no convenience benefit (or, worse, if it imposes additional
inconvenience compared to current practice); therefore, we
seek a design that improves convenience at least for the most
common user task, which is logging in.

In summary, we aim to satisfy the following:

Usability Goals

1. Improve the convenience of logging in to websites.
2. Work with existing websites and login forms.
3. Allow site-by-site migration to using the tool.
4. Allow the user to change passwords for individual sites.
5. Allow the user to log in from more than one computer.
6. Let the user only have to memorize one secret.
7. Allow the user to change the master secret.

Security Goals

8. Use a unique password for each site.
9. Resist offline dictionary attacks on user-chosen secrets.

10. Adapt to the development of faster computers.
11. Avoid storing passwords in long-term storage.
12. Avoid introducing a centralized dependency.
13. Resist attacks based on fake website login forms.
14. Resist attacks based on imitating the browser UI.
15. Help the user reliably identify websites.
16. Break the habit of entering passwords into webpages.

3. BACKGROUND AND RELATED WORK

3.1 Password Management
Password databases are a component of most modern

browsers, including Firefox, Safari, Internet Explorer, and
Opera. Mac OS X also includes a password database at
the operating system level. These databases maintain a
list of the user’s usernames and passwords, usually stored
encrypted on the user’s computer. Typically, the user is
prompted to decide whether or not each password should
be stored. When the browser detects that it has returned
to a site for which it knows a stored password, it automat-
ically fills in the login form with the stored username and
password. One drawback to this scheme is that the stored
passwords are only available on one computer (Goal 5). In-
troducing a remote service to provide access to one’s pass-
words would pose the additional risk of remotely storing
passwords (Goal 11). Finally, password databases do not
address the problem of using the same password at multiple
sites (Goal 8).

Password hashing refers to the practice of hashing a fixed,
secret string (the “master secret”) together with a variable,
non-secret string to produce a password. Different values for
the variable part yield different hash values, thus generating
many different passwords, each with about as much entropy
as the master secret. Using a one-way hash makes it difficult
for an attacker who obtains one of the generated passwords
to determine the master secret. Password hashing allows the



user to only have to memorize one secret (Goal 6), but still
use a unique password for each account (Goal 8). Since the
login passwords are computed, they don’t have to be stored
(Goal 11). This scheme also leaves open the possibility of
storing the non-secret strings elsewhere, allowing the user
to move from computer to computer (Goal 5).

Among the many implementations of password hashing
are the Lucent Personalized Web Assistant [10], HP Site
Password [14], and PwdHash [20]. LPWA is an HTTP proxy
that manages usernames, passwords, and e-mail addresses
to anonymize and protect the user’s website accounts. At
the beginning of a session the user enters a master secret;
in login forms, the user enters “\U” as the username and
“\P” as the password, which the LPWA proxy replaces
with computed values. HP Site Password is a standalone
tool that accepts a master password and a site name and
puts the computed site password on the system clipboard so
the user can paste it into a password field. PwdHash is an
implementation of password hashing in Firefox. Whenever
the user enters a password beginning with “@@”, PwdHash
hashes the password together with the domain name of the
website before submitting it.

3.2 Password Strength
Although the entire space of possible passwords may be

very large, the attacker in a dictionary attack reduces the
search space by making assumptions about how passwords
are commonly chosen — for example, that they contain
natural-language words, proper names, dates, and so on.
If the user’s password fits those assumptions, the attacker
may hit upon the password in a tractable length of time.
Increasing the amount of work required for an attacker to
check each guess can improve resistance to dictionary attack
(Goal 9).

Abadi, Lomas, and Needham [1] suggested that a user’s
chosen password can be strengthened by appending a ran-
dom supplement of a fixed length. The random supplement
is never stored; every login attempt requires searching for
the value of the supplement.

Kelsey, Schneier, Hall, and Wagner [15] proposed a scheme
called key stretching in which the password must be hashed
repeatedly a fixed number of times before it can be used.
Halderman, Waters, and Felten [12] refined this scheme in
a tool called Password Multiplier, which caches an inter-
mediate hashing result on the user’s machine to make lo-
gins faster for valid users. Passpet uses a further refinement
of this scheme in which the amount of hashing is variable
so that it can keep up with increases in computing power
(Goal 10).

3.3 Anti-Phishing Measures
Blocked site lists are a popular response to the phishing

problem. In such schemes, a single central database main-
tains a list of fraudulent sites; browsers check this database
before proceeding to a site. Earthlink [7] and Netcraft [17]
both provide these services, implemented on the client by
a browser toolbar. Microsoft’s published plans for Internet
Explorer 7 [9] include a coloured indicator in the address
bar that shows the status of the current site in Microsoft’s
database. These approaches can prevent phishing attacks
if fraudulent sites are discovered and listed quickly (Goals
13 and 14), but they demand universal trust in a single au-
thority and centralize vulnerability to failure (Goal 12). A

centralized blocking list also ignores the possibility of hon-
est differences in opinion among users — to choose a recent
example, there has been some controversy about whether
Claria belongs on spyware lists [16]. Finally, there are sig-
nificant privacy problems with any scheme in which many
clients send browsing information to a central authority.

Site information indicators provide information about the
site in the browser toolbar or status bar. The URL field is
an indicator already present in all browsers; in theory, a
user could check the domain name in the URL to avoid
phishing attacks, but in practice, the URL bar provides
little protection. Most of the participants in a recent
study [5] were fooled by misleading domain names (such as
www.bankofthevvest.com, which may be visually mistaken
for www.bankofthewest.com, or www.paypal-signin03.com,
which may seem to be associated with www.paypal.com).

SpoofStick [3] is a browser extension that displays the
current site’s domain name in large letters in the toolbar to
make the identification task a bit easier, but it still relies on
the user’s ability to distinguish legitimate and illegitimate
domain names. Firefox displays the domain name of the
SSL certificate in the status bar when a secure connection
is present. However, even a perfectly competent expert
user can be fooled by homograph attacks [11], in which
the illegitimate domain name contains Unicode characters
that are visually indistinguishable from their legitimate
counterparts.

Instead of relying on the correctness of the domain name,
some approaches rely on the SSL certificate authority. A
browser extension called TrustBar [13] and the design for
Internet Explorer 7 [9] both offer a toolbar indicator that
displays the name of the certificate authority and the site’s
name in the SSL certificate. It is not clear whether the name
of the CA will be meaningful to users, and the displayed site
name remains susceptible to homograph attacks.

Some anti-phishing schemes employ visual customization
of the login form, making the form look different for each
user so that it will be hard to attackers to imitate accurately.
The SiteKey feature [19] currently deployed by Bank of
America displays a user-selected image and “image title”
with the login form, in the hope that the user will notice
when an attacker tries to imitate the login form but fails to
display the correct image. Another scheme called Dynamic
Security Skins [4] transparently overlays a user-selected
image over the entire login form and relies on a new login
protocol, SRP, for securing the authentication process.

A petname system is a system that lets a user assign pet-
names (local labels) to objects, and then translates global
(or other) identifiers for objects into the user’s local names-
pace of petnames [22]. Though the “petname” moniker is
more recent, the concept is old and familiar. For example,
when a mobile phone rings with an incoming call, and the
caller’s phone number is in the phone’s contact list, most
phones will translate the caller’s number (the global iden-
tifier) into the caller’s name (the user’s local identifier).
In instant messaging systems such as ICQ or AIM, each
user has a unique number or username in a global names-
pace. Although users initially contact each other using this
global identifier, most IM clients let the user assign “friendly
names” to other users; thereafter, the IM client refers to the
other user using the locally assigned name instead of the
global identifier.

A Firefox extension called the Petname Tool [2] lets users



Figure 2: The user is introduced to a new Passpet.

securely assign labels to websites. TrustBar [13] allows users
to assign logo images as well as labels. When logging in,
users can check the displayed site label to ensure that they
are at the intended site. In addition to helping users detect
imitation websites (Goal 13), petnames also enable users to
identify sites and tell them apart (Goal 15).

4. DESIGN
We first describe how Passpet looks and works from the

user’s point of view; the next section will describe the
underlying mechanisms. When we mention “Passpet,” we
are referring to the most recent version of Passpet, which
is an extension to the Firefox browser. (There is also an
earlier implementation of Passpet for Internet Explorer that
provides only a subset of this functionality.)

4.1 Setup
After the Passpet Firefox extension is installed, the ensu-

ing setup procedure has three steps:

1. The user is asked to enter a master address in the
form username@hostname, where hostname identifies
a Passpet server.

2. A random icon is automatically chosen from a set
of animal icons and the animal is given a random
name. The name and icon form Passpet’s persona for
interacting with the user (Figure 2).

3. The user chooses a master secret (Figure 3). A
progress bar shows an estimate of how long it would
take for an attacker to guess the secret. The attack
time changes as the user types the secret and also in-
creases while the user waits. When the user finds the
attack time sufficiently large, the user confirms the se-
cret by entering it again, then clicks “OK.”

4.2 Everyday Use
Passpet appears as a toolbar button next to a text field

in the browser toolbar. The image and text on the toolbar
button are the icon and name of Passpet’s persona.

1. When the browser starts, Passpet’s persona is initially
“sleeping” (Figure 4).

Figure 3: As the user waits, the attack time grows.

2. To “wake up” the persona, the user clicks on it and
enters the master secret (Figure 5). Passpet identifies
the persona in its request for the secret. The persona
maintains the master secret in memory until the user
puts it back to sleep.

3. To fill in a password, the user clicks the Passpet button
(Figure 1). If the cursor is in a password field, that
password field is filled in; otherwise if there is a login
form on the current page, it is filled in. If there is
a username field paired with the password field and
a username was previously entered there to log in,
Passpet remembers and fills in the username as well.

If the user is using Passpet on a new machine to access
previously established passwords, the user skips the secret-
selection step (step 3 of setup). When the new persona is
awakened for the first time, it will pause for about the same
length of time that the user waited during setup. Thereafter,
the persona awakens instantly.

4.3 Managing Relationships
The Passpet text field displays the user’s site label for the

current site, or “unknown” if the user has not assigned a
label (Figure 6). For non-SSL sites, the text field has a pink
background and the site label is displayed with a question
mark to show that the site’s identity is not verified. For SSL
sites, the text field has a yellow background when the site is
unlabelled, and a green background when the site is labelled.
(Tooltips on the text field explain what these states mean.)

The user assigns a site label by clicking in the text field

Figure 4: The Passpet persona is initially sleeping.

Figure 5: The user enters the master secret.



unlabelled
non-SSL site

labelled
non-SSL site

unlabelled
SSL site

labelled
 SSL site

Figure 6: The four states of the site label.

and typing; the site label can also be edited in place there.
If a site label is created or edited so that it duplicates an
existing site label, Passpet notifies the user of the name colli-
sion (Figure 7) and displays information about the colliding
sites. When both sites have SSL certificates, the label col-
lision warning also indicates whether both certificates were
issued on behalf of the same root CA (according to its pub-
lic key), to indicate when an attacker might be trying to
impersonate a CA (Figure 7).

• When setting up an account with a new site, the user
enters a site label in the Passpet text field. On the
account registration page, the user clicks on Passpet
to fill in the new password.

• To start using Passpet with an existing account
(Goal 3), the user enters a site label in the Passpet
text field. On the site’s “change password” page,
the user enters the current password, then clicks on
Passpet to fill in the new password.

• To change the password for a site (Goal 4), the user
visits the site’s “change password” page. The user
clicks on Passpet to fill in the old password, changes
the site label in the text field, then clicks on Passpet
to fill in the new password.

• To change the master secret (Goal 7), the user asks
for a new Passpet persona, yielding a second button
and text field. The user can migrate a site to the new
secret by going to the site’s “change password” page,
clicking on the old persona to fill in the old password
and the new persona to fill in the new password. When
the user is done with the old secret, the old persona
can be discarded.

5. MECHANISM

5.1 Variable Appearance
To make the Passpet user interface hard to imitate, it has

no standard icon. The Passpet button is the only way to
activate Passpet, and the button icon and button text differ
from user to user.

5.2 Site Identification
Passpet associates the site label entered by the user

with a site identifier consisting of three parts: (root key,
field name, field value), following the scheme used by the
Petname Tool [2] for SSL sites.

Figure 7: Passpet warns about a site label collision.

For SSL sites, root key is the fingerprint of the root certifi-
cate authority’s public key. If the site’s SSL certificate has
an Organization Name field, then field name is “O” and
field value contains the Organization Name. Otherwise,
field name is “CN”, and field value contains the certifi-
cate’s Common Name instead. If the user assigns the label
“my bank” to a bank’s SSL site, another site can only cause
the site label “my bank” to appear if it can obtain a certifi-
cate with a certificate chain ultimately signed by the same
root authority and which yields the same site identifier.

For non-SSL sites, the root key is empty, the field name
is “D” (for domain), and the site identifier is the last
n + 1 levels of the domain name when the domain name
ends in a n-level top-level domain (TLD). For example,
.com is a single-level TLD, so the site identifier for
www.subdomain.example.com is example.com. However,
.mb.ca is a two-level TLD, so the site identifier for
www.gov.mb.ca is gov.mb.ca. Passpet uses a list of
two-level TLDs to make this determination. The intention
is that the site identifier refers to the domain at the level
of specificity where domains are usually purchased and
owned, so that sites like www.example.net, example.net,
and server2.example.net will get the same label.

The site label is allowed to contain Unicode characters so
that it can be written in the user’s own language. Homo-
graphs (similar-looking glyphs) in Unicode are not a security
vulnerability in site labels, since the site labels are supplied
only by the user, not an external source.

5.3 Password Generation
To generate passwords, Passpet employs the two-level it-

erated hashing strategy of Halderman, Waters, and Felten’s
Password Multiplier [12]. k1 and k2 are parameters that
control the degree of resistance to dictionary attack.

When the master secret is first entered on a particular
machine, Passpet computes

V = Hk1(master address || “\0” || master secret)

where H is a secure hash function to be iterated k1 times
and “\0” is a single null byte used as a separator. The value
V is then cached on the machine for future use.

In order to fill in a password field, Passpet computes

P = Hk2(site label || “\0” || master secret || “\0” || V )

where the site label is the user-assigned label for the site.
V and P depend on the master address in order to pre-
vent an attacker from precomputing a table of common
master secret values with corresponding P values.



In our implementation, the hash function H is SHA-256.
To meet the password format requirements of most websites,
Passpet generates passwords that always contain a digit, a
lowercase letter, and an uppercase letter. Many sites do
not permit characters other than letters and digits in pass-
words; for the relatively few sites that require punctuation
in passwords, the user will need to hit a punctuation key
after clicking on Passpet.

Passpet converts P into a site password string by taking
the n least significant digits of the base-62 representation
of P , using characters in the set [0-9a-zA-Z] as digits. n,
the length of the site password, is the number of characters
allowed in the password field (as specified by the maxlength

attribute of its <input> tag), up to maximum of 12. If
this password string does not include at least one digit,
one lowercase letter, and one uppercase letter, then Passpet
computes P ′ = H(P ), P ′′ = H(H(P )), and so on, until it
arrives at a password string that contains all three types of
characters.

Passpet permits any Unicode characters to be used in the
master secret, to allow the possibility of greater password
entropy. For these hash computations, the master secret
and site label are encoded in UTF-8.

5.4 Variable Strengthening
The computation of V and P above are the same as in

Password Multiplier; Password Multiplier uses fixed values
for k1 and k2, where k1 can be much larger because it only
incurs a one-time delay per machine, whereas k2 incurs a
delay for each login attempt. In our scheme, k1 is variable
and k2 is fixed. The setup procedure repeatedly hashes the
master address and master secret, allowing k1 to increase
for as long as the user is willing to wait. In other words, k1

is limited only by the user’s patience.
As the user enters the master secret during the setup

procedure, Passpet makes a rough estimate of the entropy
in the secret. This entropy value is used together with
k1 and an estimate of the attacker’s computing power, in
hashes per second, to calculate the average time required
for a successful dictionary attack. As computers become
faster, the estimate of the attacker’s computing power can
be updated without changing the rest of the software.

5.5 Local Storage
While a Passpet persona is awake, it maintains the list

of site labels in memory; each entry in the list is a pair
(site identifier, site label). The list of site labels is saved
locally on disk in a file containing the encrypted list and a
message authentication code (MAC):

site label file = EW1(site label list) || MW2(site label list)

where E is AES-CBC, M is AES-CMAC, and

W = Hk2(master secret || “\0” || V )

W1 = high 128 bits of W

W2 = low 128 bits of W

Passpet keeps a cache on the local disk for each persona.
The cache contains master address, index (see next sec-
tion), V , and site label file. A persona that knows its index
and V is said to be initialized. When the user removes a per-
sona from the toolbar, its cache is deleted.

For completeness, we note that the inputs to H used for
computing V , W , and P can be uniquely decomposed into

their constituent parts because the strings master address,
master secret, and site label cannot contain null bytes and
V has a fixed length.

5.6 Remote Storage
To regenerate the correct passwords on another computer,

Passpet needs to know the master address, master secret, k1,
k2, and the site label. The master address and master secret
are entered by the user and k2 is fixed.

Passpet relies on a remote server to store k1 and a copy
of the site label file. The master address is in the same
format as an e-mail address, username@hostname, which
allows the user to choose the storage server. Access to
the file is authenticated using the Secure Remote Password
protocol [24]. The storage server keeps a set of six-item
records in the form:

(username, index, k1, salt, verifier, site label file)

where index is an integer and salt and verifier are used for
SRP authentication. The purpose of index is to let one user
store multiple files during the process of changing from an
old master secret to a new master secret.

The server supports two unauthenticated commands:

• create(username, k1, salt, verifier)
The server picks a new index such that (username,
index) is not among its records, creates a new record
with an empty site label file, and returns index.

• list(username)
The server returns a list of (index, k1) pairs for all the
records with the given username.

To begin an authenticated session, the client selects a
record by sending (username, index) and carries out the
SRP protocol to authenticate against the salt and verifier
in that record. In the encrypted SRP session, the server
accepts one of three commands and terminates the session
after completing the command:

• delete()
The server deletes the record.

• read()
The server returns the record’s site label file.

• write(old mac, site label file)
If the MAC at the end of the record’s site label file
matches old mac, the server atomically replaces the
site label file. Otherwise, it returns a failure message.

When the user initializes a persona with a new mas-
ter secret, the strengthening process yields k1. Passpet
then determines salt and verifier according to SRP, using
username as the SRP username and W as the SRP pass-
word. It then sends a create command to the server and
caches the returned index, yielding an initialized persona.

When the user awakens an initialized persona, it computes
W from its cached V and the entered master secret. It
authenticates with the server using its cached username and
index and this W , issues a read command to get the site
label file, and checks the MAC on the file.

To start using Passpet on another machine, the user
creates a persona without choosing a new master secret,
yielding an uninitialized persona.



The first time an uninitialized persona is awakened,
Passpet issues a list command to the server and makes
a login attempt for each (index, k1) in the returned list un-
til a login succeeds. At this point the persona caches index
and V and becomes initialized; the persona issues a read

command to get the site labels, as before.
When changes are made to the site labels, Passpet en-

crypts the updated site labels and sends them back to the
storage server with a write command. Because the database
is fairly small (perhaps 40 to 80 bytes per site), it is feasible
to transmit the entire database in a single transaction. If
the write fails because the MAC has changed since the last
read, the persona issues another read to get the server’s
current site label file, reapplies the changes made since the
last successful write, and retries the write.

6. SECURITY ANALYSIS
This section examines Passpet’s effects on four classes of

attacks: dictionary attacks against the user’s passwords,
attacks against the user’s site label file, phishing attacks
intended to fool the user into revealing site-specific pass-
words, and spoofing attacks intended to fool the user into
revealing the master secret. (For the purposes of this discus-
sion, “phishing” refers to an attack that imitates a website,
whereas “spoofing” refers to an attack that imitates some
other part of the user interface.)

We also discuss Passpet’s design with regard to cross-site
login forms and cross-site scripting issues.

6.1 Dictionary Attacks
Here we analyze the effort required for various types of

attackers to guess the user’s password. The previously
published analysis of Password Multiplier [12] covers the
following cases:

Case 1: Attacker has no information. The attacker
can perform only an online attack on the password at a
particular site. The target site can impede the attack by
limiting the rate of login attempts or disabling an account
after some number of failures.

Case 2: Attacker has obtained one or more site
passwords. The attacker can perform an offline attack
against the master secret, costing at least k1 + k2 hash
computations for each guess.

Case 3: Attacker has obtained the cached value
of V . The attacker can perform an offline attack against
the master secret, costing at least k1 hash computations for
each guess.

Case 4: Attacker has obtained V and one or
more site passwords. The attacker can perform an offline
attack against the master secret, costing at least k2 hash
computations for each guess.

To the Password Multiplier scheme, we have added the
remote storage of the site label file. Since the SRP password
W depends on the master secret, an attacker who doesn’t
know the master secret cannot authenticate with the storage
server (even if the attacker has V or one or more site
passwords). So, unless the attacker has insider access to
the storage server, the four cases above apply.

What if the attacker has broken into the storage server,
or the owner of the storage server is malicious? In this case,
the attacker has access to a file that has been encrypted with

W , and can conduct an offline dictionary attack against
the master secret. For each guess at the master secret,
the attacker performs k1 hashes to obtain V and k2 more
hashes to obtain W , then attempts to decrypt the file, then
examines whether the result yields the correct MAC. The
total number of hashes per guess is k1 + k2, the same as
Case 2 above.

If the attacker has obtained the cached value of V as
well as the data on the storage server, then a faster offline
dictionary attack is possible. For each guess at the master
secret, the attacker performs k2 hashes to compute W and
then attempts decryption. The number of hashes per guess
is k2, the same as Case 4 above.

Thus, obtaining a copy of the remotely stored data offers
about the same benefit to an attacker as obtaining a site
password. With respect to dictionary attacks, the storage
server can be considered just another site where the user
has an account, since a break-in or malicious administrator
at the storage server incurs no more risk than a break-in or
malicious administrator at any other site where the user has
an account.

We conclude that Passpet provides resistance to dictio-
nary attacks that is about as strong as Password Multiplier
for the same value of k1, and can be stronger, if the user
waits long enough to obtain a larger k1. If the user’s patience
remains more or less constant, then as the user periodically
upgrades to new computers and updates the master secret,
k1 will increase to track increases in computing power.

6.2 Attacks on the Storage Server
We do not consider the user’s site labels themselves to be

secret, since the secrecy of site passwords depends on the
master secret. However, the entire list of sites where the
user has accounts does reveal information about the user’s
browsing habits, which poses a privacy risk. The site label
file is stored encrypted so that the user’s privacy remains
protected even if the storage server is compromised or the
owner of the storage server is untrustworthy.

Applying a MAC to the site label file prevents others from
altering the list of site labels. Even though the server owner
can modify the file itself, no one can produce a valid altered
file without the key W . If the server owner corrupts the
file, the client will detect that the MAC at the end of the
file does not match, so this would merely be equivalent to
denying service.

Access to the user’s file is authenticated in order to
prevent attackers from getting a copy of the encrypted file
to use for a dictionary attack against the master secret via
W , and to prevent attackers from corrupting or erasing the
data. Again, write access would not allow an attacker to
make a valid change to the site label list, but would allow
an attacker to erase it; authentication prevents this type of
denial-of-service attack.

What repercussions are there when the storage server is
unavailable? If the user attempts to use Passpet on a new
computer for the first time, Passpet will fail to log in and
will be unable to determine k1. However, in all other cases,
Passpet has a local copy of the site label file and the cached
value of V . Thus, after the user enters the master address
and master password, Passpet can still function (although
some site labels may be out of date and updates to the site
labels will not be stored).



6.3 Phishing Attacks on Site Passwords
In a typical phishing attack, the user is lured to an

impostor webpage that looks like the login page for the
target website. Believing it to be the actual target website,
the user logs in, and in the process submits a password to
the attacker.

If the user is using Passpet to manage the password for
a particular site, then the user never types or sees the
password; the password is always generated by clicking on
the Passpet button. So the user is incapable of actually
typing in the password to give to an attacker.

Therefore, to steal a site password, an attacker must cause
Passpet to generate the password. The password depends
on the site label, and the site label is associated with the
SSL certificate. It follows that the attacker must either (a)
modify Passpet’s site label file to associate the attacker’s
SSL certificate with the target’s site label, (b) obtain an
SSL certificate that Passpet recognizes as associated with
the same site label, or (c) convince the user to assign the
same site label to the attacker’s site.

To achieve (a), the attacker has to make a coherent change
to the user’s site label file, which can only be achieved if the
attacker obtains the key W , as explained in the preceding
section.

In case (b), the SSL certificate must have exactly the same
Organization Name (or Common Name, if the original had
no Organization Name) and have a signing chain ultimately
signed by the same root CA (certificate authority). The
attacker must either steal a legitimate certificate with its
private key, or convince some CA authorized to act on behalf
of the same root CA to issue another certificate with the
same name. It is reasonable to consider secure websites
responsible for protecting their own private keys, and we
consider it outside of Passpet’s scope to prevent CAs acting
on behalf of the same root authority from issuing duplicate
certificates.

Consider case (c). To support our claim that Passpet
reduces the risk of phishing attacks, we argue that it is
more difficult for an attacker to persuade a Passpet user
to reassign an existing site label to the attacker’s site than
to fool a non-Passpet user into filling in an imitation login
form.

Today’s phishing attacks depend on repeating a familiar
login process that users go through all the time: the user
sees the login form, types in the username and password,
and submits the form. The perceived user experience of
being phished is the same as the perceived user experience
of legitimately logging in.

On the other hand, being asked to reuse an existing site
label is an unusual request, and assigning the site label
requires more effort than logging in normally. In the event
that the user actually does edit a site label to collide with
an existing site label, Passpet warns the user (see Figure
7). We expect that legitimate situations requiring reuse of
an existing site label will be quite rare; this expectation
has been confirmed so far by the fact that users of Passpet
for IE have never needed to assign the same label to two
different sites. Based on further experience with deploying
Passpet, we may adjust the intrusiveness of the site label
collision warning, or forbid collisions altogether to prevent
any possibility of success for this type of attack.

6.4 Spoofing Attacks on the Master Password

An attacker could also try to fool the user by spoofing
the browser interface. For example, past attacks have used
JavaScript to hide the browser address bar and replace it
with a convincing image of an address bar to make the user
think the site is at a legitimate domain.

With Passpet in use, password security no longer depends
on the address bar, but it is conceivable that an attacker
might try to imitate the Passpet user interface in order to
get the user to enter the master secret. Passpet obstructs
this type of attack in three ways:

1. The Passpet user interface component is recognized
by its icon. Since the icon is randomly selected on
installation and differs from user to user, the attacker
is less likely to be able to produce a convincing replica.

2. When the user clicks on the icon, Passpet requests
the secret using the customized persona name, for
example, “Betty wants your secret:”. Since this name
is also different from user to user, the attacker is less
likely to be able to produce the correct label.

3. The user enters the master secret only once per session,
and only after clicking on the button, never upon
external prompting.

The purpose of the Passpet persona is to create a specific
trust relationship between the user and the Passpet tool.
The Passpet interface is intentionally minimal: Passpet is
to be recognized by its icon, unlike password forms, which
are recognized by the presence of two text fields labelled
“username” and “password.” The customized icon is a
direct part of the workflow — the user is reminded of the
icon every time he or she clicks on it, and is therefore less
likely to use a spoofed Passpet tool.

6.5 Cross-Site Issues
Some websites have pages containing login forms that

submit to a different target website. Since Passpet’s label is
associated with current SSL certificate, the label identifies
the source of the page, not the form target. We argue
that this is a better choice from a security perspective,
because the purpose of the label is to help the user make
trust decisions about the visible page, not the invisible form
target. For example, in a phishing attack, it is the page that
misleads the user, not the form target. If the label identified
the form target, an attacker could gain the appearance of
legitimacy simply by creating a fraudulent page that points
at the same target.

Since the site password is generated from the site label,
it also corresponds to the page and not the form target.
Again this is the safer option, since any information entered
on the page is vulnerable to JavaScript commands in the
page. If the site password corresponded to the form target,
an attacker could steal a site password by creating a page
that points at the same target with some JavaScript that
reads the contents of the login form.

Even though it is possible for legitimate organizations to
have login forms at two different sites (say, A and B) that
submit to the same target site C, site A and site B will
have independent site labels. This is as it should be, since
the form at site B could just as well be a page containing
JavaScript designed to capture passwords from users who
believe they are logging in at site A. For unusual cases like



this, the user can choose to give the same label to A and B
after inspecting their certificate information (Figure 7).

In a “cross-site scripting” attack, an attacker injects
JavaScript code into a page on the target site itself (for
example, by supplying it as a query parameter or posting it
on a message board). Passpet has no effect on these attacks;
it is up to the site administrator to make sure that the site
itself does not attack its own users.

7. USABILITY ANALYSIS
Passpet’s most obvious advantage is the improved conve-

nience of logging in. Instead of having to enter a username
and password for every login, the user only has to enter the
master secret once in a browser session and can thereafter
fill in login forms with a single click.

According to a Pew Internet Research study in 2000
[8], 68% of users use multiple different passwords when
registering at websites. A survey in 2003 conducted by
Protocom Development Systems [23] found that over 64% of
corporate users memorize more than five passwords for their
work. Therefore, most users would benefit from only having
to memorize one master secret instead of many passwords.

Another advantage that Passpet provides is the ease of
generating new passwords. When faced with an account
registration form, users must take a moment to decide which
password to use for the new account, or think about whether
they should invent a new password. Entering a site label
and clicking on Passpet is more convenient than choosing a
password and typing it in.

For users that change passwords periodically or sites that
require password changes, Passpet provides a significant
improvement in convenience. The Protocom survey reported
that 68% of corporate users change their passwords at least
once a year, and half of those (34%) did so once a month or
more. With Passpet, the user can generate a completely
new password by editing the site label (for example, by
appending or incrementing a number). After changing a
password, the user doesn’t have to remember that it was
changed; upon returning to the website, the new site label
automatically reappears.

The earlier implementation of Passpet, an extension to In-
ternet Explorer, has been informally tested in a deployment
to 15 users at HP Labs. Feedback was very positive; one
user even wrote to say, “Passpet has changed my life. No
longer do I agonize with passwords... it is so easy!” After
three months, ten of the users are still using Passpet for IE
regularly. The main complaint from those who stopped us-
ing it was that it’s inconvenient to use on multiple machines,
a problem addressed by Passpet for Firefox. Passpet for IE
includes the site labelling and password hashing features but
not the password strengthening and customized icon, and it
only supports SSL sites. Passpet for IE has a very similar
user interface to the current Firefox implementation, though
it pops up a separate dialog window to request the master
secret, whereas Passpet for Firefox does this in the toolbar
area for improved convenience and security.

We are currently designing a formal usability study of
Passpet for Firefox. The study will compare the effective-
ness of a standard installation of Firefox, Firefox with the
Passpet extension, and at least one other anti-phishing al-
ternative. Effectiveness will be evaluated by measuring sub-
jects’ performance, error rate, and level of satisfaction at
four tasks: registering for new accounts, logging in to ac-

counts, changing account passwords, and detecting phishing
attacks. In addition, we plan to test two hypotheses of our
design: (a) that users will be less likely to proceed when pre-
sented with the wrong persona icon or persona name; and
(b) that having to click on the Passpet button during the
login process makes the user more likely to notice the site
label (in comparison with other tools that offer indicators in
the toolbar area).

8. EVALUATION AND COMPARISON
In this section, we evaluate Passpet in terms of the

16 goals we originally listed, and compare Passpet to a
representative sample of other password management and
anti-phishing tools. Refer to Figure 7 for a table that
summarizes our findings. The first column, labelled “plain
browser,” is a baseline condition — a browser that has no
password management or anti-phishing tools added, with
the password autofilling feature turned off. The remaining
columns describe various other tools that address these
problems; each one was described briefly in Section 3.

Goal 1. Improve the convenience of logging in to
websites. Only password autofilling, LPWA [10], Password
Multiplier [12], and Passpet enable users to log in with
less effort than the standard login procedure of typing in
a username, typing in a password, and clicking a button.
With autofilling, the user doesn’t have to do anything to
have the password field filled; with LPWA, the user types in
“\P” instead of a password; and with Passpet, the user clicks
a button. HP Site Password [14] and PwdHash [20] require
slightly more effort than a normal login, as the user has to
perform an activation step (clicking a button or pressing a
key combination) before typing in a password.

With Password Multiplier, the user double-clicks in the
password field to pop up a dialog box; by default the user
has to re-enter the master secret for each login. However, the
user can ask Password Multiplier to remember the master
secret, and then filling in a password only requires a double-
click in the password field followed by a click on the dialog’s
“OK” button.

The remaining tools leave the login procedure itself un-
changed, though SpoofStick, the Netcraft Toolbar, the
Earthlink Toolbar, SiteKey, DSS, the Petname Tool, Trust-
Bar, and IE7 all expect users to check an additional indicator
if they want to avoid being phished.

Goal 2. Work with existing websites and login
forms. All the tools work with unmodified websites except
for SiteKey [19] and DSS with SRP [4]. SiteKey requires the
website to switch to a two-stage login process with a custom
image displayed in the second stage; DSS with SRP involves
switching to a new cryptographic authentication protocol.

Goal 3. Permit site-by-site migration to using the
tool. All the tools allow the user to start using them with
existing accounts one at a time.

Goal 4. Allow the user to change passwords for
individual sites. LPWA generates passwords solely based
on the user’s identity, secret, and the website domain name,
so the only way to change any password is to change the
secret, which changes all the passwords. PwdHash and
Password Multiplier do not prevent the user from changing
individual site passwords, but doing so conflicts with Goal 6.
With PwdHash, the only way to change a site password is to
enter a different password into the login form to be hashed;
then the user will have to remember multiple secrets.



USABILITY
1 Make logging in more convenient no yes yes no no yes no no no no no no no yes yes
2 Work with existing websites yes yes yes yes yes yes yes yes yes no no yes yes yes yes
3 Allow site-by-site migration to tool yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes
4 Change individual site passwords yes yes no yes if not 6 yes yes yes yes yes yes yes yes yes yes
5 Log in from other computers yes yes* yes yes yes yes yes yes yes yes yes yes* yes* yes* yes
6 Only need to memorize one secret no no yes yes if not 4 yes no no no no no no no no yes
7 Enable changing the master secret - - no yes yes yes* - - - - - - - - yes

SECURITY
8 Unique password for each site no no yes yes yes yes no no no no no no no no yes
9 Resist offline dictionary attacks no no no no no yes no no no no no no no no yes
10 Adapt to increasing CPU power no no no no no no no no no no no no no no yes
11 Avoid storing passwords yes no yes yes yes yes yes yes yes yes yes yes yes no yes
12 Avoid a single central authority yes yes yes yes yes yes yes no no yes yes yes yes no yes
13 Resist phishing by fake login forms no no yes no yes yes maybe maybe maybe maybe maybe maybe maybe maybe yes
14 Resist mimicry of browser UI no no no no no no no no no no yes no no no yes
15 Help the user identify websites no no no no no no yes* yes* no no no yes yes yes* yes
16 Stop entering secrets in webpages no no no yes no yes no no no no yes no no no yes

plain
browser

password
autofill

LPW
A

HP
Site
Password

PwdHash

Password
M
ultiplier

SpoofStick

Netcraft Toolbar

Earthlink Toolbar

SiteKey

DSS
with
SRP

Petnam
e Tool

TrustBar

IE7
with
autofill

Passpet

Figure 8: Comparison of password management and anti-phishing tools.

Password Multiplier’s dialog box contains text entry fields
for both the master secret and the site’s domain name, so
the user could conceivably change a site password by editing
the domain name. However, the dialog box comes up with
the original domain name each time, so the user would have
to re-edit the domain name every time. Thus, exercising
the ability to change individual site passwords introduces
an additional memory burden on the user.

Goal 5. Allow the user to log in from more
than one computer. None of the tools prevent a user
from logging in with another computer. However, the
ones marked with an asterisk become less useful: Password
autofilling and the site labelling features of the Petname
Tool and TrustBar depend on locally stored information
that is not carried over when the user switches to another
computer.

Goal 6. Let the user only have to memorize one
secret. The password hashing schemes (LPWA, HP Site
Password, PwdHash, Password Multiplier, and Passpet) are
designed to enable the user to have to memorize only one
secret. For PwdHash, there is a conflict with Goal 4; if the
user wants to memorize only one secret, then the user cannot
change a single site’s password without also changing all the
others.

For the remaining tools, keeping to just one secret would
mean having the same password for all sites. None of them
prevent the user from doing this, but we have marked them
“no” because in practice most users use multiple passwords
[8, 23].

Goal 7. Allow the user to change the master
secret. A change in the master secret affects all of the
site-specific passwords, which must be changed one at a
time at their websites. During the changeover process, some
passwords will be based on the new secret and some on
the old. Of the five schemes that support hashing, all but
Passpet require the user to remember which ones use the
new secret and which are still using the old secret.

HP Site Password and PwdHash let the user enter any

master secret each time a site-specific password is generated.
On each account’s “change password” page, the user would
enter the old master secret when filling in the “old password”
field and the new master secret when filling in the “new
password” field.

With LPWA, the user can end the current session and
start a new session with a different secret, but only one
master secret can be active at a time. Thus, it is not possible
to get LPWA to fill in both the “old password” and the “new
password” fields on a password change page, one using the
old master secret and one using the new master secret.

With Password Multiplier, changing the master secret
would require bringing up the Password Multiplier dialog
to fill in the “old password” field, then “deauthorizing” the
current session and “reauthorizing” with a different master
secret, then bringing up Password Multiplier again to fill
in the “new password” field. Because it takes about 100
seconds to perform each reauthorization, it would be tedious
to repeat this process for every account.

With Passpet, the user creates a new Passpet persona
with the new master secret. When the user is at a site that
has not yet been changed over, the old persona will show
a site label but the new persona will show that the site
is “unknown”. The user updates an account by entering
a site label, clicking on the old persona to fill in the “old
password” field, and clicking on the new persona to fill in the
“new password” field. The user doesn’t have to memorize
which sites have already been changed over because the new
persona will keep track of their site labels.

Goal 8. Use a unique password for every site.
The password hashing schemes (LPWA, HP Site Password,
PwdHash, Password Multiplier, and Passpet) all use crypto-
graphic algorithms to generate site passwords that impede
an attacker who has obtained one or more site passwords
from finding the master secret or any other site password.
The other tools allow users to choose the same password or
related passwords for many sites.

Goal 9. Resist offline dictionary attacks on user-



chosen secrets. Only Password Multiplier and Passpet
take password-strengthening measures to provide resistance
against dictionary attacks.

Goal 10. Adapt to the development of faster
computers. Assuming that the user is willing to wait
for about the same length of time, Passpet’s password-
strengthening scheme increases in strength when the user
upgrades to a faster computer and selects a new master
password. In order for this adaptation to keep up with
increases in the computing power of attackers, the user must
upgrade and change passwords from time to time.

Goal 11. Avoid storing passwords in long-term
storage. Password autofilling involves storing passwords
on the local disk; the other schemes do not. None of the
schemes store passwords remotely.

Goal 12. Avoid introducing a centralized depen-
dency. The site rating features in the Earthlink Toolbar,
Netcraft Toolbar, and Internet Explorer 7 refer to a single
authority that dictates whether sites are good or bad. This
introduces a central point of failure for the entire system,
as well as a central locus of trust that not all users may be
willing to accept. The Earthlink Toolbar downloads the list
to the local machine [6], but the others collect information
on the user’s browsing history: the Netcraft Toolbar collects
plaintext domain names and hashes of visited URLs [18]; In-
ternet Explorer 7 sends URLs (with query strings removed)
in real-time to Microsoft, except URLs on a client-side list
of “known good” sites [21].

Goal 13. Resist attacks based on fake website login
forms. For this goal we have classified some tools as “yes”
and others as “maybe,” depending what happens to a user
who proceeds with normal login workflow. SpoofStick, the
Netcraft Toolbar, SiteKey, DSS, Petname, TrustBar, and
IE7 are all marked “maybe” because their defense against
phishing relies upon the user to notice an indicator and
respond with a change in behaviour. LPWA, PwdHash,
Password Multiplier, and Passpet are marked “yes” because,
even if the user attempts to log in, oblivious to an attack,
the user’s password is not sent to the attacker.

Goal 14. Resist attacks based on imitating the
browser UI. Only DSS and Passpet customize the browser
UI to protect it from being spoofed. We hypothesize that
Passpet’s customization of the button icon is more effective
than the custom image overlaid on the login form in DSS.
Our reasoning is that filling in the DSS login form isn’t di-
rectly related to the image; the user’s task can be described
as “type into the two text fields,” a task that can be per-
formed just as well when the image is different or missing.
However, Passpet’s custom button icon is a way of identify-
ing which button to click. If the persona is a giraffe, then we
hypothesize that many users will conceptualize their task as
“click on the giraffe,” a task that cannot be carried out if
there is no giraffe visible. Our planned user tests will help
us understand whether our expectations are valid.

Goal 15. Help the user reliably identify websites.
It is useful not only to protect the user’s password but also to
prevent the user from being misled as to the identity of the
site. For example, if the user is using PwdHash and is lured
to a phishing site that imitates the user’s bank, PwdHash
will fill in a different password than the real bank password,
so the user’s bank password is safe. However, the phishing
site can still accept the login, continue to masquerade as the
bank, and proceed to ask the user for private information.

If the user believes that the browser has just successfully
logged in to the bank’s website, the user is vulnerable to
attack.

SpoofStick, the Netcraft Toolbar, the Petname Tool,
TrustBar, Internet Explorer 7, and Passpet all provide some
kind of identifier for the website that is easier to read than
a plain URL. However, they are marked with an asterisk
because the identifier (domain name or certificate name) is
provided by the website, and so could be chosen by an at-
tacker to be misleading. The Petname Tool and Passpet
use an identifier that is under the user’s control. TrustBar
displays both kinds of identifiers.

Of all these schemes, only Passpet incorporates clicking a
button right next to the site identifier as part of the login
process. We hypothesize that this significantly improves the
likelihood of noticing an impostor site, for which the text
field will show the word “unknown” or the wrong site label.

Goal 16. Break the habit of entering passwords
into webpages. Training users to enter secrets into web-
pages leaves users highly vulnerable to phishing, since any
aspect of a webpage’s appearance can be imitated by an
attacker. HP Site Password and Password Multiplier pop
up a separate window for entering the master secret, but
these windows could also be imitated by webpages. DSS
with SRP uses a separate pane in the browser window, and
Passpet uses part of the toolbar in the browser chrome area.

9. LIMITATIONS
As explained in section 5.3, V and P depend on

master address, in order that an attacker cannot detect
that different users have the same master secret and k1 and
cannot precompute values of V or P for common master
secrets. This has the unfortunate side effect that moving
to a different storage server changes every site password —
the effect is similar to choosing a new master secret. To
avoid this problem, Passpet could use SRP’s salt in place of
master address and define V = Hk1(salt || master secret).

Attacks on DNS (“pharming attacks”) can hijack connec-
tions to non-SSL sites and steal their site passwords; Passpet
does not reduce this inherent vulnerability of non-SSL sites.

Since the list command applied to a nonexistent user-
name returns an empty list, an attacker can repeatedly
query a server to determine which of a list of likely user-
names actually exist. A smart server could detect and pro-
hibit exhaustive querying from a single source.

The storage server makes k1 available to anyone who
asks, which enables an attacker who knows some usernames
to choose the most vulnerable users when conducting a
dictionary attack. An earlier design of Passpet avoided this
weakness by requiring the client to try progressively larger
values of k1 until authentication succeeds. However, in such
a scheme, a user initializing a Passpet persona on a new
computer might never find out whether they mistyped their
master secret, so we decided to make k1 available to the
client.

If the user initially sets up Passpet on a fast computer,
they might choose a larger k1 than they would have the
patience for on a slow computer. They may find this
frustrating if they later try to initialize a Passpet persona
on a slow computer.

Finally, like all password-hashing systems, Passpet is vul-
nerable to an offline dictionary attack against the master
secret from an attacker who has captured some site pass-



words — for example, the administrator of a site where the
user has an account (see section 6.1). A few possible ways
to provide additional security against this attack are:

1. Passwords transmitted to non-SSL sites are more vul-
nerable to being captured. One way to further protect
SSL site passwords would be to keep two master se-
crets, one for non-SSL sites and one for SSL sites, so
that capture of any non-SSL site passwords would not
help an attacker obtain SSL site passwords.

2. Most password-hashing systems, including Passpet,
impose some arbitrary limit on site password length.
This limit could provide some additional security
against this attack, at the cost of easier online dic-
tionary attacks against any particular site. If the site
passwords known to the attacker contain less entropy
than the master secret, the attacker would have to
perform an online test of each apparent hit from the
offline dictionary attack. In the case of Passpet, the
site password usually contains 12 base-62 characters,
so it gives an attacker up to 71.1 bits of information.
Most users’ master secrets will contain less entropy.

3. If we were to relax Goal 11, another way to defend
against these attacks would be to abandon password
hashing, generate truly random site passwords, and
store them with the site labels; then, captured site
passwords would convey no information at all about
the master secret.

10. FUTURE WORK
As described in section 7, we are planning a formal

usability evaluation of Passpet.
We also plan to develop a version of Passpet that is im-

plemented with HTML pages and unprivileged JavaScript,
so that Passpet users can obtain their site passwords even
on computers where they are not able to install software.

The password entropy estimator in Passpet is somewhat
unrefined, and we hope to improve it. We would also like
to let users choose their own images to use for the persona
icon, and to expand the included set of available icons.

The current Firefox extension is entirely platform-
independent, but we are considering adding platform-
specific binary modules to speed up hash computations, to
make Passpet stronger against dictionary attacks.

11. CONCLUSION
Passpet builds on Password Multiplier and the Petname

Tool, also drawing upon ideas from Dynamic Security Skins
and HP Site Password. The result is a practical, convenient
tool that relieves users of the burden of choosing and memo-
rizing many passwords, protects users’ other accounts when
some accounts are compromised, and reduces the risks of
phishing and dictionary attacks, while addressing a wider
range of real-world use cases than other website password
security tools. We plan to make Passpet available for public
download at http://passpet.org/.

12. ACKNOWLEDGEMENTS
Thanks to Alan Karp for conducting the preliminary user

tests of Passpet for IE and to David Wagner for extremely
helpful feedback on drafts of this paper and on Passpet’s

use of cryptography. We are also grateful to Tyler Close
and Alan Karp for their contributions to Passpet’s design.

13. REFERENCES
[1] M. Abadi, T. M. A. Lomas, and R. Needham. Strength-

ening Passwords. Technical Report 1997-033, SRC, 2005.

[2] T. Close. Petname Tool. http://petname.mozdev.org/.

[3] CoreStreet. Spoofstick. http://www.spoofstick.com/.
[4] R. Dhamija and J. D. Tygar. The battle against phishing:

Dynamic Security Skins. In Proc. 2005 Symposium on
Usable Privacy and Securtiy, pages 77–88, 2005.

[5] R. Dhamija, J. D. Tygar, and M. Hearst. Why Phishing
Works. In Proc. CHI 2006 Conference on Human Factors
in Computing Systems, 2006.

[6] Earthlink. Earthlink Toolbar and ScamBlocker FAQ.
http://kb.earthlink.net/case.asp?article=30492.

[7] Earthlink. Earthlink Toolbar Featuring ScamBlocker for
Windows Users.
http://www.earthlink.net/software/free/toolbar/.

[8] S. Fox, L. Rainie, J. Horrigan, A. Lenhart, T. Spooner, and
C. Carter. Trust and privacy online: Why Americans want
to rewrite the rules. August 2000.
http://www.pewinternet.org/report_display.asp?r=19.

[9] R. Franco. Better Website Identification and Extended
Validation Certificates in IE7 and Other Browsers.
November 2005. http:
//blogs.msdn.com/ie/archive/2005/11/21/495507.aspx.

[10] E. Gabber, P. B. Gibbons, Y. Matias, and A. Mayer. How
to Make Personalized Web Browsing Simple, Secure, and
Anonymous. In Proc. Financial Cryptography 1997.
Springer-Verlag, February 1997.

[11] E. Gabrilovich and A. Gontmakher. The Homograph
Attack. Comm. of the ACM, 45(2):128, February 2002.

[12] J. A. Halderman, B. Waters, and E. W. Felten. A
Convenient Method for Securely Managing Passwords. In
Proc. 14th International World-Wide Web Conference,
2005. http:
//www.cs.princeton.edu/~jhalderm/projects/password/.

[13] A. Herzberg and A. Gbara. TrustBar: Protecting (even
Näıve) Web Users from Spoofing and Phishing Attacks.
Cryptology ePrint Archive, Report 2004/155, 2004.
http://www.cs.biu.ac.il/~herzbea/TrustBar/.

[14] A. Karp. Site-Specific Passwords. Technical report, HP
Labs. http:
//www.hpl.hp.com/personal/Alan_Karp/site_password/.

[15] J. Kelsey, B. Schneier, C. Hall, and D. Wagner. Secure
Applications of Low-Entropy Keys. Lecture Notes in
Computer Science, 1396:121–134, 1998.

[16] R. Naraine. Microsoft Downgrades Claria Adware
Detections. July 2005.
http://www.eweek.com/article2/0,1895,1834607,00.asp.

[17] Netcraft. Netcraft Anti-Phishing Toolbar.
http://toolbar.netcraft.com/.

[18] Netcraft. Netcraft Toolbar Privacy Policy.
http://toolbar.netcraft.com/privacypolicy.html.

[19] Bank of America. Sign up for the SiteKey Service.
http://www.bankofamerica.com/privacy/passmark/.

[20] B. Ross, C. Jackson, N. Miyake, D. Boneh, and J. C.
Mitchell. Stronger Password Authentication Using Browser
Extensions. In Proc. 14th Usenix Security, 2005.

[21] T. Sharif. Phishing Filter in IE7. September 2005. http:
//blogs.msdn.com/ie/archive/2005/09/09/463204.aspx.

[22] M. Stiegler. An Introduction to Petname Systems. http://
www.skyhunter.com/marcs/petnames/IntroPetNames.html.

[23] Protocom Development Systems. Global Password Usage
Survey. September 2003. http://www.protocom.com/html/
whitepapers/biz_password_survey.html.

[24] T. Wu. The Secure Remote Password Protocol. In Proc.
1998 Internet Society Network and Distributed System
Security Symposium, pages 97–111, March 1998.


