
Usability and Security

D esigners of security-sensitive software applica-
tions sometimes speak of a trade-off between
achieving strong security and making software
easy to use. When we look for ways to adjust an

existing design, usability improvements seem to yield
more easily compromised software, and adding security
measures seems to make software tedious to use or hard to
understand. Yet designers cannot afford to neglect ei-
ther—both security and usability failures can render a
product useless.

Conflicts between security and usability can often be
avoided by taking a different approach to security in the
design process and the design itself. Every design problem
involves trading off many factors, but the most successful
designs find ways to achieve multiple goals simultane-
ously. To this end, in this article I  discuss when and how
we can bring security and usability into alignment
through these main points:

• Security and usability elements can’t be sprinkled on a
product like magic pixie dust. We must incorporate
both goals throughout the design process. When secu-
rity and usability are no longer treated as add-ons, we
can design them together to avoid conflicts.

• We can view security and usability as aspects of a com-
mon goal: fulfilling user expectations. This involves
maintaining agreement between a system’s security
state and the user’s mental model, both of which
change over time.

• An essential technique for aligning security and usabil-
ity is incorporating security decisions into the users’
workflow by inferring authorization from acts of desig-
nation that are already part of their primary task.

I apply these
points to three classes
of everyday security problems: worms, cookie manage-
ment, and phishing attacks. 

Scope
Two assumptions frame my discussion. First, I assume a
known user, setting aside the problem of authenticating
the user. This article will not contribute any insights on
authentication.

Second, I assume that the parties we intend to serve
have a mutually understood framework of acceptable be-
havior. (Malicious parties might attempt unacceptable
behavior, but we are not interested in serving their
needs.) For example, if music distributors wish to impose
copying restrictions that music listeners find unreason-
able, then software designers cannot serve both distribu-
tors and listeners without compromising. In such a situa-
tion, the conflict stems not from usability issues but from
disagreements between people about policy, which is a
different problem. Resolving such disputes is outside the
scope of this discussion.

Conflicts in the design process
To understand how security and usability come into con-
flict during software design, it might be helpful to look at
this tension from both points of view.

Pseudosecurity harms usability
As a security practitioner, you might have been asked to
take a nearly complete product and make it more secure.
You then know firsthand how difficult and ineffective it is
to try to add on security at the last minute. Although we

KA-PING YEE

University of
California,
Berkeley

Aligning Security 
and Usability

48 PUBLISHED BY THE IEEE COMPUTER SOCIETY      ■ 1540-7993/04/$20.00 © 2004 IEEE      ■ IEEE SECURITY & PRIVACY 

Conflicts between security and usability goals can be

avoided by considering the goals together throughout an

iterative design process. A successful design involves

addressing users’ expectations and inferring authorization

based on their acts of designation.



Usability and Security

can find some types of bugs in a code review, real security
is a deeper property of the whole design. John Viega and
Gary McGraw wrote, “Bolting security onto an existing
system is simply a bad idea. Security is not a feature you
can add to a system at any time.”1

What happens when people try to bolt on security in-
stead of designing it into a system from the ground up?
Among other things, usability suffers. After-the-fact se-
curity fixes often add configuration settings and prompts.
But extra settings and prompts aren’t very effective at
solving security problems—they just make it easier to
blame user error when something goes wrong.

Pseudousability harms security
If you’re a usability practitioner, you might have had to
take a nearly complete product and make it more usable.
Don Norman described this mistake: “[The] assumption
that user experience is just another add-on is pretty con-
sistent across the industry.”2 Thus, you might know how
difficult and ineffective it is to try to add on usability late
in the development process. Good usability engineering
requires understanding user needs and incorporating the
appropriate features throughout the design process, not
tacking on superficial features such as flashy widgets, ani-
mations, or skins.

What happens when people try to bolt on usability in-
stead of designing it into a system from the ground up?
Among other things, security suffers. Usability quick
fixes sometimes involve hiding security-related decisions
from the user or choosing lax default settings. Flashy,
nonstandard interfaces can also decrease a product’s secu-
rity by increasing complexity or confusing users.

Integrated iterative design
Both the security and usability communities have advo-
cated iterative development processes based on repeated
analysis, design, and evaluation cycles, rather than linear
processes in which security or usability testing occurs at
the end. Although many teams have adopted iterative
processes, few seem to incorporate security and usability
throughout. Not only is it important to examine these is-
sues early and often, it is vital to design the user interface
and security measures together. Iterating offers the op-
portunity to see how security and usability decisions af-
fect each other—in fact, separating security engineering
from usability engineering virtually guarantees that con-
flicts will arise.

Conflicts during use
At first glance, the source of conflict might appear obvi-
ous: security usually aims to make operations harder to
do, while usability aims to make operations easier. How-
ever, it’s more precise to say that security restricts access to
operations that have undesirable results, whereas usability
improves access to operations that have desirable results.

Users designate which results are desirable with their ac-
tions in the user interface. When a system accurately in-
terprets these actions, security and usability do not con-
flict, and the problem becomes merely a matter of
functional correctness. Thus, conflicts between the two
goals arise when a system lacks the information to deter-
mine whether a particular result is desirable.

Presenting security to users as a secondary task pro-
motes conflict. People typically use computers for pur-
poses other than security, such as communicating with
friends, using online services, managing time and money,
composing and editing creative work, and so on. Asking
users to take extra security steps is problematic because
the extra steps either interrupt their workflow or end up
hidden in configuration panels. Interrupting users with
prompts presents security decisions in a terrible context:
it teaches users that security issues obstruct their main task
and trains them to dismiss prompts quickly and carelessly.

Both arguments suggest that we can help bring secu-
rity and usability into alignment by seeking ways to ex-
tract and use as much accurate information as possible
from a user’s normal interactions with the interface. As
the following examples will illustrate, the tediousness of
security features sometimes comes from throwing away
that information. The more information about security
expectations we can determine from the actions that the
user makes naturally in carrying out a primary task, the
less we need to insert secondary security tasks.

Mental models
Although software components are often casually la-
beled trusted, trustworthiness is not a black-and-white
issue. The word trusted is meaningless without answers
to the questions, “Trusted by whom?” and “Trusted to
do what?” We cannot define security policies without
asking, “Secure from whom?” and “Secure against
what?”3 Attempting to classify all programs as simply
trusted or untrusted is not helpful, yet some security ex-
perts continue to think along such lines.4 The missing
component in this common and dangerous oversimpli-
fication is the mental model.

Simson Garfinkel and Gene Spafford wrote that “a
computer is secure if you can depend on it and its soft-
ware to behave as you expect.”5 Fulfilling expectations is
a matter of keeping behavior and expectations in agree-
ment, and the users’ expectations are based on their
mental model of the system. Both the security policy and
mental model are dynamic; they change in response to
user actions.

The basic question of who can do what suggests a
framework for mental models based on actors and abilities.6

Actors are entities that the user perceives as independent
agents—for example, application programs or other
users. At any given moment, each actor possesses a set of
abilities—potential actions that can affect the user. (Ac-

www.computer.org/security/ ■ IEEE SECURITY & PRIVACY 49



Usability and Security

tors and abilities are analogous to principals and capabili-
ties but are parts of the user’s mental model, not the
implementation.) The actor–ability state in the user’s
mental model should accurately bound the actual state of
access rights in the system at all times. To use this frame-
work, we perform usability studies to determine which
actors and abilities are present in the mental model and
how users expect their interactions with the computer to
change the actor–ability state.

Admonition and designation
Consider a software component A that a user trusts to
constrain the effects of another component B, which
affects the user’s world by making requests through A.
For example, A might be an operating system and B
might be an application running on it, or A might be a
Web browser and B might be a script or plug-in on a
Web page.

Figure 1 shows abstract diagrams of the space of possi-
ble actions. In Figure 1a, the red box is a static, pre-estab-
lished security policy intended to limit B to a set of safe
actions in the vicinity of the green region, which repre-
sents the actions the user considers acceptable. Because
the policy is only finitely detailed, it only roughly approx-

imates the exact set of abilities that the user wants B to
have. Because the policy is static, it must also accommo-
date the various ways that we might want to use B in
other situations. Thus, the red box includes large areas
not in the green region. (Windows and Unix systems are
extreme examples; applications run with the user’s full
privilege, so an enormous discrepancy exists between the
allowed set and the acceptable set of abilities.)

Security by admonition
What happens when B attempts an action unacceptable
to the user? One strategy is to help the user avoid letting B
exercise the action by explaining what will happen or in-
tervening with a request for confirmation. This approach
is security by admonition. Unfortunately, the computer
doesn’t know exactly what the user considers acceptable,
so it can’t know when to warn. It can guess what most
users would consider acceptable and trade off the incon-
venience of prompting against the magnitude of potential
damage. Nonetheless, there are bound to be false posi-
tives and negatives. Bad prompts make users wonder,
“Why is the computer asking if I want this? I already told
it to do this.” The larger the discrepancy between at-
temptable and acceptable actions, the more severely we
are forced to compromise between security and usability.
In other words, violating the principle of least privilege7

forces security and usability into conflict.

Security by designation
Figure 1b acknowledges that the security policy and user
expectations change over time and depicts a different
strategy: security by designation. In this approach, B starts
with a minimal set of abilities. When the user wants B to
do various things, the user’s actions simultaneously
express the command and the extension of authority. As
before, the solid arrows are interactions with B’s user in-
terface. The dotted arrows are interactions with A’s user
interface that simultaneously grant additional authority
to B while conveying the user’s intended command to B.
We thereby maintain a close match between the allowed
set and the acceptable set of abilities without asking users
to establish a detailed security policy beforehand or ex-
press their intentions twice.

Software systems employ a mix of these two strategies.
For instance, launching an application is a case of designa-
tion; users don’t need to select an application and then
separately grant CPU time to the newly created process
because a single action accomplishes both. Sending an
email attachment is another example; users don’t have to
select a file to attach and then separately grant read per-
missions to the message’s recipient because attaching the
file conveys both designation and authorization. Security
warnings and prompts, including any questions begin-
ning with, “Are you sure...?,” or, “Do you want to
allow...?,” are examples of admonition.

50 IEEE SECURITY & PRIVACY      ■ SEPTEMBER/OCTOBER 2004

Authority allowed by system User designates actions
and conveys extended

authority to the program
at the same time 

Program is never able to request
this unacceptable action 

Program begins
with minimal authority

(a) (b)

Prompting here may
 avert a security problem,

but is still disruptive 

Prompting here is disruptive,
does not improve security,
and reduces effectiveness

of other prompts 

Actions
acceptable to user

Figure 1. Space of possible actions. (a) Security by admonition: The
red rectangle delineates the actions that B can request through A.
The green curvy region shows the set of actions acceptable to the
user in a particular situation. The black dots represent the actions
that B exercises. The solid arrows are the user’s interactions with B’s
user interface that motivate B to take those actions; (b) security by
designation: the dotted arrows are interactions with A’s user inter-
face that simultaneously grant additional authority to B while con-
veying the user’s intended command to B.



Usability and Security

Security by designation is convenient and straight-
forward because it embodies the aforementioned ideal
of integrating security decisions with the user’s primary
task. Security by admonition, on the other hand, de-
mands the user’s attention to a secondary source of in-
formation. With designation, the user grants authority,
so the user has the necessary context to know why it
should be granted. With admonition, the program ini-
tiates the request for authority, so the user might not
have the context to decide whether to grant it. There-
fore, we should use security by designation whenever
feasible.

Implementation
To implement the designation strategy, we have to find
the act of designation on which to hang the security
decision. When tempted to ask the user, “Is action X ac-
ceptable?,” we instead ask ourselves “How was action X
specified?” The action might have been conveyed
through various software components, so we must follow
it back to its origin. When the origin is a user interface in-
teraction, we lift that interaction into a software layer that
the user trusts to handle the relevant authority (for exam-
ple, from B into A) and convey the authority together
with the designation of the action.

However, security by designation might not be feasi-
ble for various reasons. The authority-granting action
might be inaccessible, interoperating with other systems
might make the designation of actions untrustworthy, or
the effort required to support finer-grained control might
be too great. In these cases, we could be forced to fall back
on security by admonition.

Admonition is required whenever the user is likely to
grant an actor the ability to do something that the user
doesn’t want. This might happen due to user error, be-
cause the harmful action might not be technically pre-
ventable, or because the security primitives are too coarse
to distinguish what the user wants. When using admoni-
tion, be careful about leaping from stating factual conse-
quences to passing judgment on whether an action is
good or bad. Information about an action’s outcome can
be displayed neutrally without interrupting the user’s
workflow. Intervening with a warning prompt is disrup-
tive and likely to cause frustration. For example, opening
any attachment causes Microsoft Outlook to display a
warning about the possibility of viruses. The warning of-
fers two choices: to open the file now or save it to disk,
whereupon presumably the user will go and open it any-
way. Issuing such warnings too frequently reduces the
user’s trust in admonitions, decreasing their effectiveness
in critical situations. Thus, admonition should strive to
inform, not interrupt.

Admonition and designation are not mutually exclu-
sive strategies, but admonition should be avoided when
security by designation is acceptable.

Design problems
To make these ideas more concrete, let’s apply them to
some security problems that computer users commonly
experience. We will examine how to adjust a design to
implement security by designation and how to know
when it’s necessary to fall back to security by admonition.

Viruses and worms
Self-propagating email attachments have caused wide-
spread havoc in the past few years. Some of them ex-
ploit software bugs in email clients. Fixing software
bugs is an important step toward eradicating these
worms, but bugs are not the whole story. Many email
worms, such as MyDoom, Netsky, and Sobig, rely on
humans to activate them by opening executable attach-
ments; they would continue to run rampant even with
bug-free software.

Viewing and executing. On Windows and Mac OS
machines, the act of double-clicking opens documents
and launches applications. Documents are usually inert,
whereas launching an application grants it complete ac-
cess to a user’s account. Thus, by double-clicking on an
attachment, users who intend only to read it instead hand
over control of their computer to a nasty worm.

A missing piece of information here is the choice be-
tween viewing and executing. The user is given no way to
communicate this choice, so the computer has to guess,
with potentially dangerous consequences. A poor solu-
tion would be to patch this guess by asking the user, “Do
you really want to start this application?,” every time he or
she double-click on an application icon. To find a better
solution, we must consider how users specify their intent
to run a new application.

Let’s look at what users already do when they install
applications. On a Mac, users install most applications by
dropping them into the Applications folder. Suppose that
double-clicking icons in the Applications folder
launched them, but double-clicking icons elsewhere
would only passively view them. This would stop the
main propagation method of worms attached to emails
with virtually no loss of usability—Mac users usually run
applications from the Applications folder anyway. As for
Windows users, dragging a single icon is simpler than
running a multistep application installer, so switching to a
drag-and-drop style of installation would simultaneously
improve security and usability.

Although distinguishing viewing from execution
would be better than what we have now, this distinction
is rather blunt. The suggested solution is not much good
for threats other than executable attachments. Any pro-
gram the user actually installs, including downloaded
software that could contain viruses or spyware, would
still run with full user-level access, exposing the user to
tremendous risk.

www.computer.org/security/ ■ IEEE SECURITY & PRIVACY 51



Usability and Security

File and email access. The lack of fine-grained access
controls on application programs is an architectural fail-
ure of Windows, Mac, and Unix systems. Such control
would enable a true solution to the virus problem. Let’s
consider how to control two major kinds of access that
viruses exploit: file and email access.

How do users specify the intent to read or write a
particular file? In current GUIs, files are designated by
pointing at file icons and selecting file names in dialog
boxes. Standard functions in Mac OS and Windows al-
ready implement both of these interactions. To per-
form security by designation, we would stop providing
applications with default access to the file system and
instead provide them with file access via icon manipu-
lation and the file selection dialog box. Applications
would start with access limited to their own program
files and a bounded scratch space. Instead of receiving a
file name from the file dialog box and then using uni-
versal file system privilege to open the associated file by
name, an application would receive a file handle di-
rectly from the dialog box. Similarly, dropping a file on
an application would send the application a message
containing the file handle instead of the file name. The
user experience would not change, yet security would
be vastly improved.

Certain special programs, such as search tools or disk
utilities, do require access to the entire disk, and it would
be impractical to designate files individually. Instead, the
user could convey access to the entire disk by installing
programs in a Disk Tools subfolder of the Applications
folder. This would require a bit more effort than drop-
ping everything in the Applications folder, but it is not an

alien concept—on Windows systems, disk utilities are
already kept in an Administrative Tools subfolder of the
Start menu.

How do users specify the intent to send email to a par-
ticular person? Users usually indicate recipients by select-
ing names from an address book or typing in email ad-
dresses. To control access to email, we might add a mail
handle abstraction to the operating system, which repre-
sents the ability to send mail to a particular address just as a
file handle represents the ability to read or write a partic-
ular file. Then, selecting names from a standard system-
wide address book would return mail handles to the
application, just as a secure file selection dialog box would
return file handles. Mail handles would let us stop provid-
ing default network access to all programs, so that worms
could not email themselves to new victims. To allow a
mail client to implement its own custom address book
and send mail to arbitrary email addresses, the user could
install it in a Networking Tools subfolder in the Applica-
tions folder.

Through security by designation, these measures
would prevent viruses from propagating in files or email
messages while minimizing the burden on users.

Cookie management
Cookies are small data records that Web sites ask browsers
to retain and present to identify users when they return to
the same site. They let Web sites perform automatic login
and personalization. However, they also raise privacy
concerns about the tracking of user behavior and raise
security risks by providing an avenue for circumventing
logins.8 It’s helpful to allow users some control over when
and where cookies are sent.

Many browsers address this problem by prompting
users to accept or reject each received cookie. But
cookies are so ubiquitous that users are constantly
pestered with irritating prompt boxes when they en-
able this feature. To reduce the user’s workload, some
browsers provide additional buttons to accept or reject
all cookies from the site they’re currently visiting. Un-
fortunately, after users choose a site-wide policy, it can
be hard to find and reverse the decision. Moreover, de-
ciding to accept cookies is irrelevant because receiving
cookies poses no risks; the real risks lie in sending
cookies.

The missing piece of information here is whether the
user, when returning to a Web site, wants to continue
with the same settings and context where the last session
left off. To find a better solution, we should consider how
users return to Web sites they’ve seen before.

The existing user interface mechanism for this pur-
pose is the bookmark list. Users designate the site they
want by selecting a bookmark. Therefore, suppose that
received cookies were embedded in bookmark records.
Users could choose to bookmark the generic view of a

52 IEEE SECURITY & PRIVACY      ■ SEPTEMBER/OCTOBER 2004

Figure 2. A file selection dialog box. We can achieve much stronger
file access protection against viruses and Trojan horses without any
change to this user interface.



Usability and Security

site (before logging in) or personalized view (after log-
ging in), or even create multiple bookmarks for different
sessions. The decision to activate a cookie would be in-
corporated into the existing task of selecting a book-
mark. This isn’t the same as the way people browse now,
but it would be easy to explain and would not be inher-
ently inconvenient.

Bookmarks containing cookies could be displayed
with an icon to show that they are personalized. A sim-
ilar icon in the browser toolbar could indicate whether
the current view is personalized by a cookie. Clicking
on the icon would let users select among generic and
personalized views of the current site, letting users acti-
vate cookies when arriving at a site by means other than
bookmarks.

This solution would eliminate the need for prompt
boxes or lists of cookie-enabled or cookie-disabled sites
to manage. Login cookies would no longer be left linger-
ing on public-access machines. Users’ privacy would be
better protected. Sites would no longer mysteriously
change their appearance depending on hidden state. And
users would gain additional functionality: bookmarks
would let them manage multiple logins or multiple sus-
pended transactions at the same site. Security and usabil-
ity would be simultaneously improved.

Phishing attacks
Forged email messages and Web sites designed to steal
passwords are another serious problem. In a typical phish-
ing attack, a user receives an email message that appears to
be from a bank, asking the user to click on a link and ver-
ify account information. The link appears to point to the
bank’s Web site but actually takes the user to an identity
thief ’s Web site, styled to look just like the bank’s official
site. If an unsuspecting user enters personal information
there, the identity thief captures it.

Here, the missing piece of information is the form
submission’s intended recipient. In one scam, for exam-
ple, an imitation of PayPal was hosted at http://
paypai.com. This problem is trickier than the preceding
examples because the system has no way of knowing
whether the user intended to go to http://paypal.com
and was misdirected to http://paypai.com or whether
the user really wanted to visit http://paypai.com. The in-
tention resides only in the user’s mind.

The designation at the heart of this security problem is
the link address. But the user does not specify the address;
the user merely clicks in the email message. The safest so-
lution would therefore be to secure the email channel so
users can tell whether an email comes from a trustworthy
source. But until we convince most email users to use se-
cure email, we are stuck interfacing with an untrustwor-
thy mail system and have no user act of designation on
which to hang a security decision. 

In this situation, practical constraints make security by

designation infeasible. We could add security by admoni-
tion at several points along the path from the email mes-
sage to the impostor’s form:

• The email client could make the link destination
clearer by emphasizing the true domain name in the
message body.

• The browser could display a user-assigned name in a re-
served part of its toolbar to help identify the site hosting
the form.

• As the user enters information into form fields, the
browser could display the entered text in red if the user
hasn’t assigned a name to the receiving site before. A
label below the current field could appear if the site is
unfamiliar or suspicious (see Figure 3). (A similar label
could warn against sending secrets over an unencrypted
connection.)

• When the mouse pointer passes over a form submission
button, the mouse cursor could change into a special
icon annotated with the site’s user-assigned name.

Although users could overlook them, the warnings
would still be more effective than prompting users on
every form submission. These admonitions inform the
user but don’t interrupt workflow. Using forms would
not require any additional effort, but phishing for pass-
words would be significantly less successful.

Real-world implementations
As the preceding discussion illustrates, we can achieve
certain kinds of security improvements with minimal
changes to the operating system, but truly strong secu-
rity often requires more fundamental changes to operat-
ing systems and applications. CapDesk and Polaris are
software projects that aim at different points along this
trade-off.

www.computer.org/security/ ■ IEEE SECURITY & PRIVACY 53

Figure 3. An admonition. As the user fills out a form, the entered
text appears in red to indicate that the user has not assigned a
name to this site. Without interrupting the workflow, a message
informs the user of the hosting site’s domain name.



Usability and Security

54 IEEE SECURITY & PRIVACY      ■ SEPTEMBER/OCTOBER 2004

CapDesk9 is a capability-based desktop shell that
implements security by designation, eliminating vul-
nerability to viruses while letting users run untrusted
software in a familiar GUI environment. It explores
what we can achieve by building everything from the
ground up with security and usability in mind. In-
stalling an application endows it with minimal default
authorities, such as access to its own program files. The
users can convey additional file access to applications by
manipulating file icons and selecting files in file dialog
boxes. In an earlier article, I proposed 10 guidelines for
secure interaction design (see the “Guidelines for

secure interaction design” sidebar for a complete list
and explanation).6 Throughout most aspects of its de-
sign, CapDesk meets all but two of these guidelines
(visibility and revocability).

On the other end of the spectrum, researchers at HP
Labs are developing Polaris, a safe environment for run-
ning Windows applications. Polaris explores what we can
achieve by applying the concept of security by designa-
tion without changing the operating system or the appli-
cations. It provides effective protection against viruses,
email worms, and spyware. In this environment, virus-
scanning software’s chief value is to inform the user of
failed attacks. Polaris is in the early stages of prototyping,
but user tests are already showing promising results. Of
the 24 users who have tried Polaris, 20 found it comfort-
able enough to use in their daily work with the Microsoft
Office suite and other applications.

A lthough security and usability practitioners must
learn to work together to create truly secure systems,

they already have more in common than might be initially
obvious. Both recognize the importance of incorporating
their concerns throughout the design cycle and acknowl-
edge the need for an iterative rather than a linear design
process. I have argued one step further: that security and
usability not only must be considered early and iteratively,
but also together.

Many obstacles prevent a perfect solution to the
today’s problem of security and usability, such as the in-
stalled base of operating systems and the requirement
for interoperation with untrustworthy domains such as
email. However, I hope the arguments and examples I
present here convince readers that we can achieve sig-

These 10 design guidelines are based on the actor–ability

framework. Readers might find them helpful in designing

and evaluating user interfaces for secure systems.

General principles
• Path of least resistance. The most natural way to do a task should also

be the safest.

• Appropriate boundaries. The interface should draw distinctions

among objects and actions along boundaries that matter to the user. 

Maintaining the actor–ability state
• Explicit authorization. A user’s authority should only be granted to

another actor through an explicit user action understood to imply

granting.

• Visibility. The interface should let the user easily review any active au-

thority relationships that could affect security decisions.

• Revocability. The interface should let the user easily revoke authority

that the user has granted, whenever revocation is possible.

• Expected ability. The interface should not give the user the impres-

sion of having authority that the user does not actually have.

Communicating with the user
• Trusted path. The user’s communication channel to any entity that

manipulates authority on the user’s behalf must be unspoofable and

free of corruption.

• Identifiability. The interface should ensure that identical objects or

actions appear identical and that distinct objects or actions ap-

pear different.

• Expressiveness. The interface should provide enough expressive

power to let users easily express security policies that fit their goals.

• Clarity. The effect of any authority-manipulating user action should

be clearly apparent to the user before the action takes effect.

Guidelines for secure interaction design

Figure 4. The user opens a file in an editor running under CapDesk.



Usability and Security

nificant improvements by designing security and us-
ability together, maintaining agreement with users’
mental models, and applying security by designation
wherever possible. 

Acknowledgments
I thank Morgan Ames, Nikita Borisov, Tyler Close, Linley Erin Hall,
Marti Hearst, Mark S. Miller, Kragen Sitaker, and Marc Stiegler for
their help with this article. Many of the ideas expressed here originated
in discussions with them.

References
1. J. Viega and G. McGraw, Building Secure Software, Addi-

son-Wesley, 2002, p. 14.
2. D. Norman, The Invisible Computer, MIT Press, 1998, p. 205.
3. B. Schneier, Secrets and Lies: Digital Security in a Networked

World, Wiley, 2004, p. 12.
4. B. Lampson, “Computer Security in the Real World,”

Computer, vol. 37, no. 6, 2004, pp. 37–46.
5. S. Garfinkel and G. Spafford, Practical UNIX and Internet

Security, 2nd ed., O’Reilly & Associates, 1996, p. 6.
6. K.-P. Yee, “User Interaction Design for Secure Systems,”

Proc. 4th Int’l Conf. Information and Communications Secu-
rity, R. Deng et al., eds., LNCS 2513, Springer, 2002,
pp. 278–290; http://zesty.ca/sid.

7. J.H. Saltzer and M.D. Schroeder, “The Protection of
Information in Computer Systems,” Proc. IEEE, IEEE
Press, vol. 63, no. 9, pp. 1278–1308.

8. B. McWilliams, “Hotmail at Risk to Cookie Thieves,”
Wired News, 26 Apr. 2002; http://wired.com/news/
technology/0,1282,52115,00.html.

9. D. Wagner and D. Tribble, A Security Analysis of the
Combex DarpaBrowser Architecture, http://combex.com/
papers/darpa-review/index.html.

Ka-Ping Yee is a PhD student in computer science at the Uni-
versity of California, Berkeley. His research interests include sys-
tem security, usability, and decision support systems. He is a
member of the ACM, the Foresight Institute, the Python Soft-
ware Foundation, the Electronic Frontier Foundation, and the
Free Software Foundation. Contact him at ping@zesty.ca.

www.computer.org/security/ ■ IEEE SECURITY & PRIVACY 55

EXECUTIVE COMMITTEE
President:
CARL K. CHANG* 
Computer Science Dept.
Iowa State University
Ames, IA 50011-1040
Phone: +1 515 294 4377
Fax: +1 515 294 0258
c.chang@computer.org
President-Elect: GERALD L. ENGEL*
Past President: STEPHEN L. DIAMOND*
VP, Educational Activities: MURALI VARANASI*
VP, Electronic Products and Services: 
LOWELL G. JOHNSON (1ST VP)*
VP, Conferences and Tutorials: 
CHRISTINA SCHOBER†
VP, Chapters Activities: 
RICHARD A. KEMMERER (2ND VP)*
VP, Publications: MICHAEL R. WILLIAMS*
VP, Standards Activities: JAMES W. MOORE*
VP, Technical Activities: YERVANT ZORIAN*
Secretary: OSCAR N. GARCIA*
Treasurer:RANGACHAR KASTURI†
2004–2005 IEEE Division V Director: 
GENE F. HOFFNAGLE†
2003–2004 IEEE Division VIII Director: 
JAMES D. ISAAK†
2004 IEEE Division VIII Director-Elect: 
STEPHEN L. DIAMOND*
Computer Editor in Chief:DORIS L. CARVER†
Executive Director: DAVID W. HENNAGE†
* voting member of the Board of Governors
† nonvoting member of the Board of Governors

E X E C U T I V E  S T A F F
Executive Director: DAVID W. HENNAGE
Assoc. Executive Director: ANNE MARIE KELLY
Publisher: ANGELA BURGESS
Assistant Publisher: DICK PRICE
Director, Administration:
VIOLET S. DOAN
Director, Information Technology & Services: 
ROBERT CARE

PURPOSE The IEEE Computer Society is the
world’s largest association of computing pro-
fessionals, and is the leading provider of tech-
nical information in the field.

MEMBERSHIP Members receive the month-
ly magazine Computer, discounts, and opportu-
nities to serve (all activities are led by volunteer
members). Membership is open to all IEEE
members, affiliate society members, and others
interested in the computer field.

COMPUTER SOCIETY WEB SITE
The IEEE Computer Society’s Web site, at
www.computer.org, offers information and
samples from the society’s publications and con-
ferences, as well as a broad range of information
about technical committees, standards, student
activities, and more.     

BOARD OF GOVERNORS
Term Expiring 2004:  Jean M. Bacon, Ricardo
Baeza-Yates, Deborah M. Cooper, George V. Cybenko,
Haruhisha Ichikawa, Thomas W. Williams, Yervant
Zorian
Term Expiring 2005: Oscar N. Garcia, Mark A.
Grant, Michel Israel, Stephen B. Seidman, Kathleen M.
Swigger, Makoto Takizawa, Michael R. Williams
Term Expiring 2006: Mark Christensen, Alan
Clements, Annie Combelles, Ann Gates, Susan Men-
gel, James W. Moore, Bill Schilit
Next Board Meeting: 5 Nov. 2004, New Orleans

IEEE OFFICERS
President: ARTHUR W. WINSTON
President-Elect: W. CLEON ANDERSON
Past President: MICHAEL S. ADLER
Executive Director: DANIEL J. SENESE
Secretary: MOHAMED EL-HAWARY
Treasurer: PEDRO A. RAY
VP, Educational Activities: JAMES M. TIEN
VP, Pub. Services & Products: MICHAEL R. LIGHTNER
VP, Regional Activities: MARC T. APTER
VP, Standards Association: JAMES T. CARLO
VP, Technical Activities: RALPH W. WYNDRUM JR.
IEEE Division V Director: GENE F. HOFFNAGLE
IEEE Division VIII Director: JAMES D. ISAAK
President, IEEE-USA: JOHN W. STEADMAN

COMPUTER SOCIETY OFFICES
Headquarters Office

1730 Massachusetts Ave. NW 
Washington, DC 20036-1992
Phone: +1 202 371 0101  
Fax: +1 202 728 9614
E-mail: hq.ofc@computer.org

Publications Office
10662 Los Vaqueros Cir., PO Box 3014
Los Alamitos, CA 90720-1314
Phone:+1 714 8218380
E-mail: help@computer.org
Membership and Publication Orders:
Phone: +1 800 272 6657  
Fax: +1 714 821 4641
E-mail: help@computer.org

Asia/Pacific Office
Watanabe Building
1-4-2 Minami-Aoyama,Minato-ku
Tokyo107-0062, Japan
Phone: +81 3 3408 3118  
Fax: +81 3 3408 3553
E-mail: tokyo.ofc@computer.org




