
1 Voting

What makes the voting problem so hard? 2

How does an election work? 6

Why use computers for elections? 9

How did electronic voting become controversial? 11

Why does software correctness matter? 14

1

What makes the voting problem so hard?

When I say the “voting problem,” I’m referring specifically to the

system that collects and counts votes. There are many other

parts of the election process that I’m not going to address in

this dissertation, such as voter registration, electoral systems,

and election campaigning. The collection and counting of votes

has been particularly controversial in the United States due to

problems with electronic voting in recent elections.

One of the great things about doing election-related

research is that just about everyone immediately understands

why it’s important. In my experience, whenever elections are

the topic of conversation, people have a lot to say about their

opinions on the matter. It’s encouraging to see that so many

people care deeply about democracy.

In conversations about the voting problem, there seem to be

four ideas in particular that come up all the time. It’s not

unusual to think that running a fair election ought to be a

straightforward task—after all, in some sense, it’s just counting.

To give you a taste of why the voting problem is not as easy as it

might seem, let’s begin by examining these four suggestions.

Banking machines work fine, so voting machines should be

no problem. On the surface, banking machines and voting

machines seem similar: users walk up and make selections on a

touchscreen to carry out a transaction. One of the largest

vendors, Diebold Inc., even produces both kinds of machines.

But the incentives and risks are very different.

Banking machines have money inside—the bank’s money. If

money goes missing, you can bet the bank will find out right

away and be strongly motivated to fix the problem. If the bank

machine incorrectly gives out too much cash, the bank loses

money; if it gives out too little, the bank will be dealing with

irate customers. Everything about the bank transaction is

recorded, from the entries in your bank statement to the video

recorded by the camera in most bank machines. That’s because

Voting 2

the bank has a strong incentive to audit that money and track

where it goes. If the machine makes mistakes, the bank loses—

either they expend time and money correcting your problem, or

you will probably leave and take your business to another bank.

With voting machines, it’s another story altogether. Voting

machines aren’t supposed to record video or keep any record

that associates you with your votes, because your ballot is

supposed to be secret. You don’t receive any tangible

confirmation that your vote was counted, so you can’t find out

if there’s a problem. Anybody can stand to gain by causing

votes to be miscounted—a voter, pollworker, election

administrator, or voting machine programmer—and the

consequences are much harder to reverse. Correcting an error

in your bank balance is straightforward, but the only way to fix

an improperly counted election is to do an expensive manual

recount or run the whole election again. And if you’re unhappy

with the way your vote was handled, you can’t easily choose to

vote on a competitor’s machine.

Give each voter a printed receipt, just like we do for any

other transaction. The surface comparison between voting and

a financial transaction also leads many people to suggest that

receipts are the answer. But the purpose of a receipt is quite

different from what is needed to ensure an accurate election.

When you buy something, the receipt confirms that you

paid for it. If there turns out to be a problem with the product,

you can use the receipt to get your money back or to get the

defective product exchanged.

When talking about a receipt from a voting machine, what

most people have in mind is a printed record of the choices you

made, just like a receipt from a cash register. If you took home

such a receipt, what would you do with it? There’s nothing to

refund, and you can’t use a receipt to get an exchange on a

defective politician. The receipt could record the choices you

made, but the receipt alone doesn’t assure that those choices

were counted in the final result. In fact, if the receipt

constitutes proof of which choices you made, it can be sold—

Voting 3

defeating the whole point of the secret ballot, which is to avoid

the corruption that vote-buying campaigns can cause.

A truly useful voting “receipt” would do exactly the

opposite: it would not reveal which choices you made but would

let you confirm that your choices were counted. Although these

two requirements sound paradoxical, researchers have invented

a variety of schemes that achieve them through the clever use

of cryptography. However, a key weakness of the schemes

proposed so far is that they rely on advanced mathematics, with

a counting process that would be a mystery to all but a tiny

minority of voters. This would run counter to the democratic

principle of transparent elections. Researchers are continuing

to search for simpler verification schemes that can be

understood by an acceptably large fraction of the public.

If we can trust computers to fly airplanes, we can trust

computers to run elections. The comparison between airplanes

and elections misses at least three key differences.

First, the visibility of failure is different. An airplane cannot

secretly fail to fly. When an airplane crashes, it makes

headlines; everybody knows. A forensic investigation takes

place, and if the crash is due to a manufacturing defect, the

airplane manufacturer may be sued for millions of dollars. But

an election system can produce incorrect results without any

obvious signs of failure. Therefore, we require something more

from election system software than what we require from

airplane software. A successful election system must not only

work correctly; it must also allow the public to verify that it

worked correctly.

Second, the target audience is different. Commercial

airplanes are designed to be flown by pilots with expert

training, but voting machines have to be set up by pollworkers

and operated by the general public. Our trust in airplanes is a

combination of trust in the equipment and trust in the pilots

who operate it. Whereas pilots have to log hundreds of hours of

flight time to get a license, pollworkers are often hired on a

temporary basis with only an afternoon or a day of training.

Voting 4

Third, security violations affect the perpetrators differently.

Pilots and flight attendants are strongly motivated to uphold

security procedures because their own lives could be at risk. A

rogue voter or pollworker, on the other hand, would have more

to gain and less to lose by surreptitiously changing the outcome

of an election.

Count the ballots by hand—it works for the Canadians.

Ballots are considerably longer and more complicated in the

United States than in many other countries. Whereas there is

just one contest in a Canadian federal election (each voter

selects a Member of Parliament), ballots in the United States can

contain dozens of contests. For example, a typical ballot1 for the

November 2004 general election in Orange County, California

contained 7 offices and 16 referenda, for a total of 23 contests

that would have to be tallied by hand. Ballots in Chicago, Illinois

that year2 were even longer: ten pages of selections, consisting

of 15 elected offices, confirmations of 74 sitting judges, and

one referendum—a total of 90 contests. When you appreciate

the scale of the task, it becomes easier to understand why many

people are motivated to automate the process with computers.

Hand-counting paper ballots is by no means impossible, but it

would be considerably more expensive and time-consuming in

the United States than in other countries with simpler ballots.

∗ ∗ ∗

In summary, voting is especially challenging because:

• All involved parties can gain by corrupting an election.

• Results can be incorrect without an obvious failure.

• Democracy demands verifiability, not just correctness.

• Voter privacy and election transparency are in conflict.

• Elections must be accessible and usable by the public.

• Ballots in the United States are long and complex.

1The example here is Orange County’s ballot type SB019 from November 2004, available in NIST’s collection
of sample ballots at http://vote.nist.gov/ballots.htm.

2 This refers to the “Code 9” ballot style in Cook County, Illinois (also available in NIST’s collection), used in
Ward 19, Precincts 28, 43(R), 48, 50(R), and 66, as well as precincts in Wards 21 and 34.

Voting 5

How does an election work?

Running an election is a tremendous organizational task. In the

end, it does come down to counting, but it’s what’s being

counted that makes it such a challenge. Election administrators

are, in effect, trying to take a fair and accurate measurement of

the preferences of the entire population—a controlled

experiment on a grand scale. As any psychologist will tell you,

performing experimental measurements on human subjects is

fraught with logistic pitfalls and sources of error. But elections

are worse: virtually everybody has an incentive to actively bias

the measurement toward their own preferred outcome. Thus,

elections involve a security element as well, unlike most

scientific measurements.

As if that weren’t enough, a typical election in the United

States is not just one opinion poll but many different polls

conducted on the same day—for federal, state, and local elected

offices, as well as state and local referenda—and each poll has

to be localized to a specific region. Each contest appears on

some ballots but not others, resulting in different combinations

of contests on different ballots. Each combination is called a

ballot style. Because there are so many kinds of districts (such

as congressional districts, state assembly districts,

municipalities, hospital districts, and school districts), and

district boundaries of each kind often run through districts of

other kinds, there can be over a hundred different ballot styles

in a single county. There can also be multiple ballot styles at

one polling place, if it serves voters on both sides of a district

boundary, or if there are different ballots for voters of different

political parties.

Process. Here is a simplified breakdown of the election process,

setting aside voter registration and considering only the

collection and counting of votes. The events before, during, and

after actual voting make up the three stages of the process:

preparation, polling, and counting.

Voting 6

• Preparation. Before any votes can be cast, election officials

must prepare the ballots. Election officials map out all the

different kinds of political districts, assemble the contests

that are relevant to each political district, compose the

contests into ballot styles, and determine which ballot styles

go to which polling places.

• Polling. At polling places, pollworkers sign in each voter and

make sure that each voter gets the correct style of ballot.

Each voter makes their selections privately and casts a

ballot. Voters may also have the option of voting by mail or

participating in “early voting” by showing up in person at a

special polling place before election day.

• Counting. The records of cast votes are counted, either at

the polling places or at a central election office. If counting

initially occurs at polling places, the counts are then

transmitted to the central office for tallying. The votes for

each contest are extracted from all the ballots on which that

contest appears, and tallied to produce a result.

Equipment. The preceding description is intentionally

ambiguous about whether paper or electronic voting is used,

because the same three stages take place regardless of the type

of equipment.

If paper ballots are used, a layout is prepared for each ballot

style, usually designed on a computer. Election administrators

estimate how many ballots of each style will be needed so that

an adequate number can be printed for distribution to polling

places. After being marked, paper ballots can be counted by

hand or scanned on machines (called optical scanning

machines). The scanning can take place at the polls (precinct

count optical scanning), where each voter feeds their ballot

through a scanning machine into a ballot box, or it can take

place at a central office, where all the paper ballots are gathered

and scanned in high-speed machines after polls close (central

count optical scanning).

An alternative to paper ballots is to make selections on an

electronic voting machine that directly records the selections in

Voting 7

computer memory. These machines are called direct recording

electronic (DRE) machines. In this case, preparing ballots

consists of producing ballot definition files on electronic media

(such as memory cards or cartridges) to be placed in voting

machines. The ballot definition determines what will be

displayed to the voter. (Machines for scanning paper ballots

also require ballot definitions that specify how the marks on the

paper should be counted.) Some DRE machines also print a

voter-verified paper audit trail (VVPAT)—a paper record of the

voter’s selections that is shown to the voter for confirmation,

but kept sealed inside the machine to enable later recounts.

∗ ∗ ∗

To sum up, there are three broad categories of elections in

terms of how machines are used:

1. Vote on paper; count by hand.

2. Vote on paper; count by machine.

3. Vote on machine; count by machine.

(3a. The voting machine may also produce a paper record.)

Voting 8

Why use computers for elections?

As the preceding description makes clear, all three stages of the

election process involve complex and detail-oriented work.

Preparation involves managing information about all the

different contests, candidates, and ballot styles. Polling involves

distributing this information and collecting results from all the

polling places. Counting involves consolidating all the votes for

each candidate in each contest across all the ballots and ballot

styles. With so many contests on the ballot, computers can

make this process much easier.

It’s not surprising that election administrators have looked

to computers for help with elections. Computers are used to

great benefit in automating a broad range of complex and

repetitive tasks and for recordkeeping functions throughout all

kinds of government agencies. Running an election involves

organizing and processing a lot of information, such as ballot

descriptions and vote tallies, and databases are effective tools

for managing this information.

The appeal of computers goes beyond their potential to

increase the speed and accuracy of the count. Computerized

vote-entry machines have much greater flexibility than paper

ballots in the method of presenting contests and choices to

voters. They can walk voters through the voting process,

provide more detailed instructions, and prevent overvotes. They

eliminate the possibility of ambiguous or improperly scanned

marks on paper. They can offer a larger selection of languages.

They can point out contests that a voter may have missed

before finalizing the marked ballot. They can even read the

names of candidates aloud, in headphones, for voters who have

trouble reading or voters who are blind. Some voters have

physical disabilities that prevent them from using pencil and

paper. Computerized vote-entry machines allow people to vote

using a variety of input devices, such as large buttons, foot

pedals, head-controlled switches, or switches controlled by air

pressure (“sip-and-puff” devices).

Voting 9

All of these things become possible when the voting process

is conducted by an interactive computer program instead of an

inert piece of paper. There appears to be a substantial rate of

voter errors when voting on paper ballots—in a Rice University

study of paper ballots [24], over 11% of the 126 ballots collected

contained at least one error. A friendlier and richer voting

interface offered by a computer might help voters avoid making

mistakes. Furthermore, the principle of equal rights demands

that we provide a way for disabled citizens to cast their votes

privately and independently.

∗ ∗ ∗

In short, computers can offer several advantages:

• Computers can help manage election-related data.

• Computers can count and tally votes faster.

• Counting by computer avoids human counting errors.

• Computers can offer a richer user interface to voters,

potentially improving accessibility and voter accuracy.

Depending on how computers are used in an election, some or

all of these advantages may apply.

1. Vote on paper; count by hand.

2. Vote on paper; count by machine.

3. Vote on machine; count by machine.

enrich voting
user interface

reduce
counting error

speed up
counting

manage
election data

Computers could be used to:For this type of election:

Figure 1.1. Advantages that computers could potentially offer for elections.

Voting 10

How did electronic voting become
controversial?

In November 2000, Florida’s confusing “butterfly ballot” and

heavily disputed punch-card recounts [2, 85] brought highly

public embarrassment to the United States election system. The

election system suffered widespread criticism on many fronts,

particularly for using an outdated counting mechanism.

Determined to avoid repeating this fiasco, policymakers and

election administrators looked to new technology for a solution.

The result was a growing wave of interest in electronic voting,

which many hoped would eliminate the ambiguity of punch

cards and provide fast, accurate counts.

Two years later, the U. S. Congress passed the Help America

Vote Act (HAVA) [78], authorizing hundreds of millions of

dollars to be spent on new voting machines. Disability

organizations were optimistic about the new requirement for

“at least one direct recording electronic voting system or other

voting system equipped for individuals with disabilities at each

polling place.” But computer scientists warned against a hasty

switch to electronic voting, citing damage to the transparency

and reliability of elections. Though electronic voting machines

were already in use in some localities (more than 10% of

registered voters used them in 2000 [22]), their adoption surged

after HAVA passed in 2002.

In early 2003, election activist Bev Harris made a startling

discovery [32]. She used Google to search for “Global Election

Systems”—the old name of the company that was acquired by

Diebold and renamed “Diebold Election Systems.” Diebold

Election Systems is one of the heavyweights of the United States

election systems industry; its touchscreen voting machine, the

AccuVote-TS, was the leading DRE machine used in the 2004

United States election [22]. By following the links from her

search results, Harris found a completely unprotected Internet

site containing a large collection of company files, including the

source code for the AccuVote-TS.

Voting 11

Researchers at Johns Hopkins University and Rice University

examined this source code and published a landmark

report [43] in May 2004, detailing their discovery of “significant

and wide-reaching security vulnerabilities.” They discovered

that voters could vote multiple times and perform

administrative functions; they found that cryptography was

both misused and missing where it should have been used; and

they expressed a lack of confidence in the quality of the

software in general, concluding that it was “far below even the

most minimal security standards applicable in other contexts.”

Their findings starkly contradicted Diebold’s public claims that

its system was “state-of-the-art,” “reliable,” “accurate,” and

“secure” [20].

The state of Maryland then commissioned reviews of the

same system from two other agencies: Science Applications

International Corporation (SAIC) and RABA Technologies. The

SAIC report [72], released in September 2003, confirmed that

the system was “at high risk of compromise,” and the RABA

report [64], released in January 2004, agreed that the “general

lack of security awareness, as reflected in the Diebold code, is a

valid and troubling revelation.”

In the 2004 U. S. general election, over 30% of voters cast

their votes on electronic voting machines [22]. Voters called in

thousands of reports of machine problems, including total

breakdowns, incorrectly displayed ballots, premarked choices

on the ballot, incorrectly recorded votes, undesired cancellation

of ballots or selections, and nonfunctioning or incorrect

audio [82].

Since 2004, further investigations have continued to tear

down the façade of confidence in the security of voting

machines, the claims of vendors, and the testing regime under

which the machines were certified. Media story after media

story reported on conflicts of interest, regulatory failures, and

newly exposed technical vulnerabilities in all the major voting

systems, not just Diebold’s.

In the summer of 2007, the California Secretary of State

conducted a “top-to-bottom review” of the voting systems used

Voting 12

in California, in which I had the opportunity to participate as a

reviewer. This was the broadest review of voting system source

code to date; the review included source code for DRE machines

and optical scan machines from each of three major vendors

(Diebold Election Systems, Sequoia Voting Systems, and Hart

InterCivic), as well as the election management software

responsible for ballot preparation and tallying. However, the

review teams only had five weeks to examine the source code.

Despite the short time frame, they found serious and pervasive

security problems in every system reviewed [7, 12, 35]. The

software was not written defensively; security measures were

inadequate, misapplied, or poorly implemented; the presence of

numerous elementary mistakes suggested that thorough testing

had not been done. In particular, every system was found

vulnerable to catastrophic viral attacks: the compromise of a

single machine during one election could affect results

throughout the jurisdiction and potentially affect the results of

future elections.

As of this writing, it has become clear that we cannot trust

our elections to the electronic voting machines of today’s

leading vendors. Whether we will ever be able to trust them

remains an open question. There is not yet a clear consensus on

what standards a voting machine should reasonably be

expected to meet. It is also by no means obvious that any set of

feasible technical requirements would yield a voting machine

worthy of our trust—it might simply be beyond the state of the

art to create a sufficiently reliable and economical electronic

voting machine. The point of this work is to make progress

toward a better design, so as to bring us closer to

understanding what is possible and to inform our standards

and expectations for these machines.

Voting 13

Why does software correctness matter?

Switching from mechanical to electronic voting machines is a

bigger step than it might seem at first. Today’s electronic voting

machines are not just electrically-powered devices performing

the same function as their mechanical predecessors, the way

electric light bulbs replaced oil-burning lanterns. Electronic

voting machines contain general-purpose digital computers,

which makes them fundamentally different and capable of

much more than the special-purpose machines they replace. It

would really be more accurate to call them “voting computers,”

as they are called in the Netherlands.

Just like any other general-purpose computer, a voting

computer can be programmed to do anything—count votes,

miscount votes, lie to voters, play games, or even attack other

computers. To prove the point, a Dutch group called “Wij

vertrouwen stemcomputers niet” (“We do not trust voting

computers”) reprogrammed the Nedap ES3B, their nation’s

leading voting computer, to play a passable game of chess [31].

Consequently, the types of attacks that are possible against

voting computers are also fundamentally different than those

possible against mechanical voting machines. Tampering with a

lever machine can cause it to lose some votes or stop working

entirely. Tampering with a computer can cause it to actively

engage in sophisticated schemes to deceive voters and

pollworkers, behave in different ways at different times or

under different circumstances, and even subvert or conspire

with other computers.

The behaviour of a general-purpose computer is determined

entirely by its software. Assuring the correctness of software

has been a major unsolved problem in computer science

research for decades. Computer scientists have been able to

prove some aspects of correctness for small programs, but all

will readily acknowledge that nobody knows a general method

for proving software programs to be correct. The software

developed in industry tends to be larger and more complex

Voting 14

than can be analyzed by the best known techniques, while the

programming languages and tools used in industry generally

lag behind the state of the art in research.

Mistakes in software can remain latent for years, even when

the code is publicly disclosed and inspected by motivated

programmers. For example, OpenSSH is a popular program for

secure login. Its developers have declared security to be their

number one goal [17], and they have gained a reputation for

security practices more rigorous than most. Nonetheless,

security flaws were discovered in OpenSSH in 2003 that had

been present since its first release in 1999, and had survived

intensive software audits by the OpenSSH team.

The problem is exacerbated by the possibility of insider

attacks: what if someone involved in writing the voting software

wants to bias the election? As far as anyone knows, the flaws in

OpenSSH were inadvertent mistakes, so intentional flaws can

probably be made even harder to find. (Chapter 8 offers some

anecdotal evidence that detecting purposely hidden software

flaws can be extremely difficult.) Reviewing the voting software

is not just a matter of looking for code that seems intended to

change votes or tallies. Any flaw that lets an attacker infiltrate

the machine is a serious problem, since that flaw can then be

exploited to reprogram the machine to do anything. So, a

malicious programmer of voting machine software doesn’t have

to write suspicious-looking vote-altering code; he or she only

needs to leave an innocent-looking security weakness. When a

security weakness is found, there’s no way to tell whether it is

an intentional backdoor or an inadvertent mistake—as long as

someone knows the flaw, it can be exploited. If any flaw can be

an attack, we need voting software to be essentially flawless.

All of this explains why this dissertation focuses on

software correctness. There are people who have many years of

experience managing election personnel and running

paper-based elections. There are people who know how to build

reliable machines and reliable computer hardware. But the part

that no one fully understands yet is how to get the software

right.

Voting 15

2 Correctness

What constitutes a democratic election? 17

What does it mean for a voting system to be correct? 19

How does correctness relate to safety? 20

What is the tree of assurance goals for an election? 24

What does it mean for a voting system to be secure? 30

16

What constitutes a democratic election?

The democratic ideal of a legitimate election requires that the

results reflect an unbiased poll of the voters—accurate

according to what each voter intended, and fair in that each

eligible voter has equal and unhindered opportunity to

influence the outcome. These two basic goals can be broken

down according to the mechanics of how elections are run.

Accuracy. By “accurate,” I mean that the data about voter

preferences is accurately gathered and combined to produce the

final result. To make this happen, each ballot has to be

processed correctly at the three stages of voting:

• Correct ballot: Each voter should be presented a ballot with

complete and accurate information on the contests for

which they are eligible to vote.

• Cast as intended: Each voter’s recorded vote should match

what the voter intended to cast.

• Counted as cast: The calculation that decides the outcome

should accurately incorporate every recorded vote and no

extraneous votes.

Fairness. By “fair,” I mean that eligible voters (and only eligible

voters) are free to vote as they please, without bias. We can look

at this from two angles: how the sample of voters is drawn from

the population, and how the opinions of the voters are

measured.

• Unbiased sampling: Votes should come from a fair sample

of the population of eligible voters.

• Unbiased measurement: Each vote should be a fair

measurement of a voter’s preference.

Each of these two aspects of fairness can be elaborated in

further detail. In modern democracies, fair sampling is upheld

through measures aimed at offering equal access to the polls,

and also through the principle of “one person, one vote.”

Correctness 17

• Unbiased sampling is achieved by ensuring:

! Authorized voters: Only voters that are eligible for a

contest should be permitted to vote on it.

! One ballot per voter: No voter may cast more than one

ballot.

! Equal suffrage: Every voter eligible for a contest should

have an equitable opportunity to vote on it.

An unbiased measurement depends on eliminating influence

from external pressures as well as influence from the

presentation of the ballot itself.

• Unbiased measurement is achieved by ensuring:

! Secret ballot: No voter’s choices should be exposed by

the voting system or demonstrable by the voter to

others, lest votes be influenced by social pressure,

bribery, threats, or other means.

! Equal choice: Every option in a contest should have an

equitable opportunity to receive votes.

Democracy also demands a further virtue: since power is

derived from the consent of the governed, the election process

itself must be accountable to the people. The manner in which

all of the above goals are achieved should be verifiable, so that

members of the public can assure for themselves that the

election is accurate and fair. The verifiability of the election is

not listed among the above goals because it is a “meta-goal,”

like a layer on top of all the other goals.

A widely preferred avenue for achieving verifiability is

through transparency—exposing the election process to public

scrutiny. However, verification can also take place through the

investment of trust in independent experts or inspectors (or

suitably balanced committees thereof), or through

cryptographic means, in which a calculation provides

mathematical evidence of the property to be verified.

Correctness 18

What does it mean for a voting system to be
correct?

In order to be confident that an election is democratic, we

would want to have assurance of all of the goals just

mentioned. But these goals are for the election as a whole,

including all the people, processes, and technology involved.

When we talk about a particular piece of equipment, such as a

voting machine, we have to choose a specific set of subgoals

that it is responsible for. For example, a voting machine cannot,

by itself, guarantee that each voter only votes once. However, if

the machine requires something like an access card in order to

cast each ballot, this feature in combination with a suitably

controlled process for handing out access cards, carried out by

competent, trustworthy pollworkers, can effectively limit each

voter to casting just one ballot.

Every goal is achieved through some combination of human

processes and technology. This dissertation is primarily

concerned with the technological part of an election—the

equipment and software involved in collecting and counting

votes, which I am calling the “voting system” for short. To say

that the voting system works correctly means that it fulfills the

responsibilities that have been assigned to it. Only after we’ve

decided on this assignment of responsibilities is it meaningful

to say whether it is correct. As the access card example

illustrates, it is usually necessary to subdivide goals in some

detail in order to separate out subgoals that technology can

address.

Correctness 19

How does correctness relate to safety?

Engineers have been designing safety-critical systems for many

years, so it’s instructive to examine the research and practice in

methodologies for developing these systems.

Analysis. One of the most common analysis techniques for

safety-critical systems is fault tree analysis [83]. Fault tree

analysis is a way of identifying all the ways that a particular

failure can occur. To perform fault tree analysis, one begins

with a root node that represents the undesired event (the fault);

then one identifies all the events or situations that could cause

that undesired event, and each one becomes a child of the root

node. Each node can be further refined by adding children that

identify possible causes. For example, a few nodes in a fault tree

for a fire extinguisher might look like this:

fire extinguisher
fails to deploy

pin is stuck in
handle

insufficient pressure
in tank

gas has leaked out
of the tank

fire extinguisher has
been previously used

Figure 2.1. A small portion of a fault tree for a fire extinguisher.

Fault trees are known in the computer security world as

threat trees [3] or attack trees [70]. An attack tree lays out all

the possible ways that an attacker might come to violate a

specific security restriction. In an attack tree, the top node is

the attacker’s ultimate goal. The children of a node specify

various ways that an attacker can achieve the goal. For example,

if the ultimate goal is to break open a safe, an attacker could do

Correctness 20

so by obtaining the combination or by drilling open the safe.

Part of the attack tree might look like this:

open the safe

drill the safe
obtain the

combination

manipulate the safe
bribe someone who

knows the combination

Figure 2.2. A small portion of an attack tree for an attacker who wants to break into a safe.

In the above examples, any one of the children of a node is

sufficient to lead to the parent; the relationship among siblings

is a disjunction (OR). Fault trees and attack trees can also

specify conjunctions (AND) and other logical relationships. The

nodes can be labelled with numbers to indicate the probability

of an event or the cost of a step in an attack.

Design. Fault trees and attack trees are used to analyze existing

systems to identify their weaknesses. But when one is designing

a system, the goal is to establish the system’s worthiness.

In the safety-critical literature, a written justification of a

system’s safety is called a safety case [87]. Safety cases are

required by many safety standards. A safety case is often a very

large document, as it incorporates all the arguments and

supporting evidence for the safety of each element of the

system. The development of the safety case can take up a large

fraction of the effort in designing a safety-critical system.

Hence, significant research efforts have been directed toward

ways of organizing and maintaining safety cases.

Like fault trees, safety cases are also typically structured in

a top-down approach based on successive refinement. The

technique that is probably the most prominent in the research

Correctness 21

literature is the Goal Structuring Notation [41], which elaborates

on a basic tree-like organization of goals by allowing nodes of

several different types: goals, strategies, justifications,

assumptions, and so on. Here is an example of a section of a

safety case for a microwave oven diagrammed in Goal

Structuring Notation:

microwave is
acceptably safe

argument that
radiation

emission levels
are safe

emission levels are
safe when door is

closed

emission levels are
safe when door is

open

results of
radiation
testing

argument that
door interlock

deactivates
emitter

. . .

. . .
Figure 2.3. Part of a safety case for a microwave oven in Goal Structuring Notation.

Voting systems. A safety case would be appropriate for

justifying why we should place our confidence in a voting

system. Ideally, certification of any voting system for

deployment would require the manufacturer to provide a

convincing and clearly structured safety case.

The hierarchy of goals for a democratic election form the

Correctness 22

starting point for such a safety case. The process of dividing

goals into subgoals produces a tree of assurance goals for a

system, which I’ll call an assurance tree. (An assurance tree

could be considered a simplified instance of Goal Structuring

Notation in which all the nodes are correctness goals.) When an

assurance tree is fully elaborated, the leaves of the tree are

individual responsibilities that can be assigned to specific

people and specific devices.

The process of refining the general goals into specific

subgoals is a type of design activity. Different solutions will

subdivide the main goals differently and assign responsibilities

for the subgoals differently. For example, access cards are one

possible way to keep voters from voting multiple times, but of

course they are not the only way. It is a design choice to

implement “one ballot per voter” in terms of the two parts:

“pollworkers give one access card to each eligible voter” and

“the voting machine allows each access card to be used just

once to cast a ballot.” Making these design choices and refining

the goals at every level eventually leads to a set of specific

technical requirements for the voting system.

In an assurance tree, the children of each node indicate

what requirements have to be upheld in order for the parent

goal to be upheld. The final result of refining the tree is an

assignment of specific responsibilities to various parts of the

system—for example, a set of tasks to be carried out by

humans and a set of tasks to be carried out by computers—

such that all the assurance goals are upheld. The tree captures

the design of the system as well as the security assumptions

that the designer made.

Correctness 23

What is the tree of assurance goals for an
election?

The requirements that were presented earlier can be refined one

step further without specifying a particular voting system

design. First I’ll explain each subgoal, then present the whole

tree, which can form a basis for the safety case of any election.

Accuracy: correct ballot. In order for a voter to receive a

correct ballot, the correct ballot has to exist for that voter and it

must contain the correct instructions and choices for the

election. The voter then has to be given the right kind of ballot,

and the voter has to receive it without alteration.

Accuracy: cast as intended. The voter’s vote is properly

recorded if the ballot indicates what the voter wanted and is

cast when the voter is ready. Choices should be selected if and

only if the voter makes them, and the voter should be free to

mark the ballot in any manner that is valid. (When paper is

used, the voter can also cast an invalid ballot; then the ballot is

not counted. When electronic machines are used, the machine

usually prohibits the voter from marking the ballot in an invalid

manner.) To further ensure that the cast ballot matched the

voter intent, the voter should get accurate feedback about what

is currently selected, and should be able to make changes or

corrections before casting the ballot.

Accuracy: counted as cast. For the count to be correct, there

must be no extra or missing votes, and the votes that are

counted must be exactly as voters indicated them on their cast

ballots.

Fairness: authorized voters. I use the term voting session for

the interval that begins with a voter entering a protected area of

the polling place such as a voting booth, and ends when the

voter walks away, either having cast or failed to cast a ballot. In

Correctness 24

a typical election, voter authorization consists of controlling

access to voting sessions and ensuring that there is no other

way to cast a ballot except in a voting session.

Fairness: one ballot per voter. Limiting each voter to one cast

ballot is also achieved by controlling access to voting sessions.

In practice, each voter is authorized for one voting session at a

time. If a voter wants to try again, a pollworker either destroys

the ballot or determines that the voter did not already cast a

ballot, and then authorizes another voting session.

Fairness: equal suffrage. There are three steps to casting a

ballot. First the voter has to get to a polling station. Then, at the

polling station, the voter has to be allowed to begin a voting

session. Then, in the voting session, the voter has to

successfully cast the ballot. Equal suffrage demands that voters

have reasonable access and be free of discrimination at all of

these stages.

Another way that a voter can be disenfranchised is to make

an error. It is infeasible to demand that there be no errors at all,

but fairness requires that errors not be biased against any

particular group of voters. The controversy over the 2006 race

for Florida’s Congressional District 13 highlighted the

significance of biased error. Different voters saw different ballot

layouts, and post-election analysis [29] has suggested that the

particular layout used in Sarasota County caused a large

fraction of voters to skip the congressional race by mistake.

Fairness: secret ballot. The election system should not itself

violate the voter’s privacy. But it’s a tougher task to prevent

coercion. Voters’ susceptibility to influence may not be based in

reality: as long as voters believe they will profit or suffer by

voting a certain way, the belief is sufficient to influence their

votes. For example, an attacker could claim to have insider

access that allows him to identify which voters voted for a

particular candidate and punish them. Whether or not the

attacker has such insider access, or whether discovering voters’

Correctness 25

identities is even possible, the fear of punishment could be

enough to sway votes. Different kinds of voting systems will

lend differing degrees of plausibility to such claims—for

example, some voters might be easily persuaded that someone

could violate their privacy via computerized vote records, but

they might find it harder to see how such a violation would be

possible with hand-counted paper ballots.

The formal definitions of coercion-resistance in the research

literature [18, 38, 60] require that voters be unable to prove to a

vote-buyer that they voted a certain way. But the issue is more

nuanced than that. A vote-buyer doesn’t need solid proof, just

evidence sufficiently plausible that offering a reward for it will

influence the vote.

For example, consider an election system in which voters

receive receipts indicating how they voted, but could also forge

such receipts. One might think that such an election system is

coercion-resistant, since it isn’t worthwhile for a vote-buyer to

buy something that can be forged. But resistance to coercion

also depends on the cost of producing a forgery: if forgeries

require enough effort that a significant number of voters will

vote as directed by the vote-buyer instead of carrying out the

forgery, the vote-buyer will succeed at influencing the election.

Therefore, the secret ballot goal includes the requirement that

voters not be given any plausible evidence (not just hard proof)

of their votes that could be sold to an external party.

Fairness: equal choice. Since the goal is to avoid bias among

the options within a contest, it would not do for some of the

options to be shown one way to some voters and a different way

(say, in red, or in larger print) to others.

It would be ideal to avoid all bias among options presented

on the same ballot, but this is not possible: some option has to

be presented first, and there is a well-documented bias toward

the first item [46]. The next best thing is to change the order of

presentation from ballot to ballot such that there is a uniform

distribution of bias towards all the options, when the ballots are

considered in aggregate.

Correctness 26

There is a more subtle kind of bias that also should be

avoided: a bias relative to the voter’s preferred choice. Imagine,

for example, a contest with three options A, B, and C. Suppose

the ballot design causes half the voters who intend to mark A to

mistakenly mark B, half of those who want B to mark C, and

half of those who want C to mark A. Such a ballot is not biased

toward any particular option, but it is still clearly unfair: B

could win an election in which most voters intended to vote for

A. So there is also a requirement for a uniform distribution of

errors with respect to the voter’s intended choice.

∗ ∗ ∗

Gathering all the requirements just mentioned gives us the

following high-level assurance tree for elections.

Accuracy

• Correct ballot

G1. For every voter, there exists a ballot style containing

the complete set of contests in which that voter is

eligible to vote.

G2. On every ballot, all the information is complete and

accurate, including instructions, contests, and

options.

G3. In every voting session, the correct choice of ballot

style is presented to the voter.

G4. Every ballot is presented to the voter as the ballot

designer intended.

• Cast as intended

G5. At the start of every voting session, no choices are

selected.

G6. The voter’s selections change only in accordance

with the voter’s intentions.

G7. The voter receives accurate feedback about which

choices are selected.

G8. The voter can achieve any combination of selections

that is allowable to cast, and no others.

Correctness 27

G9. The voter has adequate opportunity to review the

ballot and make changes before casting it.

G10. The ballot is cast when and only when the voter

intends to cast it.

• Counted as cast

G11. Every selection recorded on a ballot cast by a voter is

counted.

G12. No extra ballots or selections are added to the count.

G13. The selections on the ballots are not altered between

the time they are cast and the time they are counted.

G14. The tally is a correct count of the voters’ selections.

Fairness

• Unbiased sampling

! Authorized voters

G15. Only authorized voters can begin voting

sessions.

G16. Only in voting sessions can ballots be cast.

! One ballot per voter

G17. No voting session allows more than one ballot to

be cast.

G18. Each voter is allowed at most one voting session

in which a ballot was cast.

! Equal suffrage

G19. Every voter has reasonable, non-discriminatory

access to a polling station they can use.

G20. Every voter can begin a voting session within a

reasonable, non-discriminatory waiting time.

G21. Every voting session provides a reasonable,

non-discriminatory opportunity to cast a ballot.

G22. For every voter that is eligible to vote in a

particular contest, there is a uniform likelihood

of voter error on that contest.

• Unbiased measurement

! Secret ballot

G23. The processing of voter choices does not expose

how any particular voter voted.

Correctness 28

G24. Voters are not provided any way to give plausible

evidence of how they voted to an external party.

! Equal choice

G25. Within each contest, all the options are

presented in the same manner on each ballot

and across all ballots.

G26. For each contest, the voters are presented with

ballots that, in aggregate, yield a uniform

distribution of bias in favour of each option.

G27. For each contest, the voters are presented with

ballots that, in aggregate, yield a uniform

frequency of voting errors across the voters that

intend to vote for each option.

G28. In each contest, for each option, voters intending

to vote for that option are presented with ballots

that, in aggregate, yield a uniform distribution of

voting errors in favour of every other option.

Correctness 29

What does it mean for a voting system to be
secure?

A voting system is secure if it can be relied upon to produce the

correct results in the face of determined attempts to corrupt

the outcome. Thus, security and correctness are closely related:

security is just correctness in an adversarial context. The

intentional violation of any subgoal in the assurance tree would

constitute a security breach.

Since this dissertation is focused on the software security

questions surrounding electronic voting machines, let’s separate

out the goals that rely on software from those that don’t.

Of the goals in the assurance tree, these are normally addressed

by humans in the preparation and conduct of the election:

G1. For every voter, there exists a ballot style containing the

complete set of contests in which that voter is eligible to

vote.

G2. On every ballot, all the information is complete and

accurate, including instructions, contests, and options.

G18. Each voter is allowed at most one voting session in

which a ballot was cast.

G19. Every voter has reasonable, non-discriminatory access to

a polling station they can use.

The following goals are addressed through good ballot design.

They could be violated by voting machine software that displays

the ballot incorrectly or lacks the ability to display ballots in a

fair manner. However, as long as the voting machine presents

the ballot as the ballot designers intended (which is goal G4), we

can consider these goals the responsibility of ballot designers:

G22. For every voter that is eligible to vote in a particular

contest, there is a uniform likelihood of voter error on

that contest.

G25. Within each contest, all the options are presented in the

same manner on each ballot and across all ballots.

Correctness 30

G26. For each contest, the voters are presented with ballots

that, in aggregate, yield a uniform distribution of bias in

favour of each option.

G27. For each contest, the voters are presented with ballots

that, in aggregate, yield a uniform frequency of voting

errors across the voters that intend to vote for each

option.

G28. In each contest, for each option, voters intending to vote

for that option are presented with ballots that, in

aggregate, yield a uniform distribution of voting errors

in favour of every other option.

The following goals could be addressed almost entirely by

election-day procedures, or through a combination of such

procedures and proper software behaviour, depending on how

the voting system is designed:

G15. Only authorized voters can begin voting sessions.

G16. Only in voting sessions can ballots be cast.

The proposed designs in this dissertation assume that the

above two goals are upheld by human procedures. For G15,

election workers ensure that only authorized voters are

permitted physical access to voting machines. And for G16,

election workers should provide no other way to cast ballots

outside of the officially approved procedures.

The remaining goals are those that necessarily depend on the

correctness of the voting machine software implementation:

G3. In every voting session, the correct choice of ballot style

is presented to the voter.

G4. Every ballot is presented to the voter as the ballot

designer intended.

G5. At the start of every voting session, no choices are

selected.

G6. The voter’s selections change only in accordance with

the voter’s intentions.

G7. The voter receives accurate feedback about which

choices are selected.

Correctness 31

G8. The voter can achieve any combination of selections that

is allowable to cast, and no others.

G9. The voter has adequate opportunity to review the ballot

and make changes before casting it.

G10. The ballot is cast when and only when the voter intends

to cast it.

G11. Every selection recorded on a ballot cast by a voter is

counted.

G12. No extra ballots or selections are added to the count.

G13. The selections on the ballots are not altered between the

time they are cast and the time they are counted.

G14. The tally is a correct count of the voters’ selections.

G17. No voting session allows more than one ballot to be cast.

G20. Every voter can begin a voting session within a

reasonable, non-discriminatory waiting time.

G21. Every voting session provides a reasonable,

non-discriminatory opportunity to cast a ballot.

G23. The processing of voter choices does not expose how

any particular voter voted.

G24. Voters are not provided any way to give plausible

evidence of how they voted to an external party.

G3 and G20 depend on election-day procedures as well as the

voting machine software. For G3, typically a pollworker is

responsible for selecting the correct ballot style for each voter,

and the voting machine must correctly use the ballot style

indicated by the pollworker. For G20, the polling station needs

to serve voters efficiently and fairly, but also the voting

machines should be available and ready to serve voters and

should not freeze up or crash. G23 and G24 depend on the

overall design of the voting system, including the human

procedures, as well as the correct functioning of the voting

machine software.

Security issues with voting machine software usually have to do

with upholding and enforcing the 17 goals in this last list.

These 17 goals are the focus of my efforts to achieve and verify

software correctness.

Correctness 32

3 Verification

How do we gain confidence in election results? 34

How can we verify the computerized parts of an election? 36

What kind of election data can be published? 39

What makes software hard to verify? 41

In what ways are today’s voting systems verifiable? 44

What is the minimum software that needs to be verified? 48

What other alternatives for verification are possible? 52

33

How do we gain confidence in election results?

An election consists of many steps, each of which processes

information such as ballot and candidate data, voter

information, and records of cast votes. At the most basic level,

each step takes some input and produces some output.

Confidence in the ultimate result—the output of the last step in

the chain—depends on confidence that each step was correctly

performed. The choice of the type of voting system determines

which steps are carried out by people and which by computers.

Earlier we described the election process in terms of three

stages: preparation, polling, and counting. With respect to

establishing confidence in a voting system, these stages can be

broken down further into the nine steps shown at the left, which

include transmission as well as processing of information.

design
ballots

present
ballots

count
votes

tally
subtotals

distribute
ballots

mark or
enter votes

collect
votes

transmit
subtotals

Preparation

Polling

Counting

cast
votes

The preparation stage consists of events prior to the

opening of polls, which includes not only designing the ballots

but also distributing them to polling places. This production

and distribution takes place for both paper ballots and

electronic ballot definition files.

The polling stage involves presenting the ballots to voters,

who make selections and cast the ballots. For sighted voters

reading paper ballots, presentation of the ballot is a trivial step,

but for electronic voting computers the fidelity of the

presentation is a real issue.

In many elections, counting occurs in two parts: votes are

first counted at polling places, then the counts are centrally

tallied to yield the final results. This stage includes the

transmission of votes to the person or machine that counts

them. The distinction between local and central counting is

important because the local counting process often takes place

in public, whereas the aggregation of results and central tallying

does not.

For a step that transforms information from one form to

another, confidence comes from ensuring that it produced the

correct output for the input it was given. For a step that

Verification 34

transports information from one place to another, confidence

comes from ensuring that the integrity of the information was

preserved.

Because of the way I’ve defined the three accuracy goals

(correct ballot, cast as intended, and counted as cast), they differ

slightly from the three chronological stages: getting the correct

ballot to the voter includes the presentation step at the polls.

The following figure shows which steps correspond to the three

accuracy goals. Under each step is the name of a subgoal for

that step.

counting
correctness

count-to-tally
integrity

tallying
correctness

ballot-to-voter
integrity

vote recording
correctness

ballot
correctness

ballot-to-poll
integrity

design
ballots

mark or
enter votes

present
ballots

distribute
ballots count

votes

collect
votes tally

subtotals

transmit
subtotals

C O R R E C T B A L L O T C A S T A S I N T E N D E D C O U N T E D A S C A S T

vote-to-count
integrity

cast
votes

Preparation Polling Counting

Figure 3.1. The nine steps in the election process and their corresponding integrity and

correctness goals.

Verification 35

How can we verify the computerized parts of
an election?

Suppose that a particular information processing step in an

election is carried out by a computer. As I mentioned in

Chapter 1, the computer’s behaviour is completely controlled by

its software. Let’s say the software program responsible for this

step takes some input x and produces some output y. For

example, if this is the vote-tallying step, x could be a collection

of electronic vote records and y could be the election totals.

input
x

output
y

program

Figure 3.2. For some particular processing step in an election, a software program takes

the input x and produces the output y.

If you want to check that the program produced the correct

result, you have two main choices:

1. Software verification. You can examine the program itself

and confirm that it works the way you expected. Depending

on the assumptions you make, this may include manual

inspection of the source code, automated analysis, or formal

mathematical proofs. Once you have confirmed that the

program does exactly what it’s supposed to do in every

possible circumstance, you can be confident that this

particular output, y, is correct.

2. Result verification. You can take the input x and figure out

what the corresponding output should be. If the actual

output y matches the expected output, then you know it’s

correct. To do this, you need records of both x and y, as well

as some way to independently repeat the operation—

perhaps you have another program that you trust, or

perhaps you can work out the expected output by hand.

Verification 36

There is also a variant of result verification:

2a. Indirect result verification. Some schemes allow you to

establish confidence without repeating the entire operation.

For example, given information derived from x and y, you

might have a way to mathematically check their consistency.

Or, you might be allowed to choose parts of x and y to

check, enabling you to establish a high probability of a

correct result.

Software verification has the advantage that it only needs to be

done once on a given program to establish confidence in all the

output it will ever produce. Result verification has to be

repeated each time the program produces new output.

However, there are three major factors weighing in favour of

result verification.

Programs change. The apparent advantage of doing software

verification only once becomes less compelling when you

consider that software changes all the time. Features are added;

bugs are discovered and fixed; demands change. In particular,

election software is subject to election law, which differs from

state to state in the United States. Whenever legislation gets

passed, election software may have to be updated to satisfy new

requirements. Any change would invalidate previous reviews or

proofs of correctness and require the software to be verified

over again.

Software verification requires disclosure. Disclosure of

software code often faces legal, financial, or political barriers.

Voting machine companies have resisted public disclosure of

their source code on the grounds that it could help a motivated

attacker, and they claim that copyright and trade secret

protection are necessary to support a sustainable, profitable

business. [34] Disclosing code would certainly increase the

transparency of an election and improve the accountability of

the testing process. But having ways to check the correctness of

an election without depending on disclosure of all the code

would allow the election to sidestep this disclosure dispute. The

Verification 37

democratic process is healthier if private interests have fewer

opportunities and fewer plausible incentives to prevent the

public from verifying an election.

Software verification is much harder. As a later section of this

chapter will explain (page 41), the behaviour of software can be

extremely difficult to analyze. Software review by human

experts is expensive, time-consuming, and prone to error. The

only way to be truly sure is to construct a mathematical proof,

but it is well beyond the state of the art to do this for programs

the size of typical computer applications. When such proofs are

constructed, they often aim to prove things about a simplified

model of the program rather than the program itself.

Unfortunately, a mathematical proof can only prove that a

program satisfies a formal specification of what it’s supposed

to do. The proof only establishes that the program is correct if

the specification accurately expresses what it means to be

correct—and such specifications are themselves complex and

tricky to write.

Verification 38

What kind of election data can be published?

There is an inherent tension between voter privacy and the

desire for verifiable elections. As argued earlier in this chapter,

verifying results is preferable to verifying software. But public

verification of results depends on publishing election data.

Suppose there is some data made available to the public to

enable verification. This might include partial or complete

information about ballots, votes, and results, or something

derived from such data. Each published piece of data (let’s call

it a record) might be identifiable as corresponding to a

particular voter, or it might not. And each record might contain

sufficient information to reveal votes, or it might not. These two

features are independent: for example, a published record could

indicate a vote for a particular candidate, yet not be associated

with any particular voter.

For voters to be able to check that their own ballot was

correctly received (i.e., cast as intended), they need to be able to

look up their own ballots. To do this, they need some kind of

public record of their ballot that is identifiable.

For voters to be able to confirm the tally by directly

performing their own recount, they have to be able to see the

votes. To do this, they need public records that reveal votes.

Published records that are identifiable and reveal votes

would enable the public to verify everything, at the expense of

voter privacy. Imagine an election in which every ballot is

published online and uniquely associated with the voter who

cast it. Any voter could look up their ballot online to confirm

that it is correct as published, and anyone could count the

published ballots to confirm the tally. In such a system,

software correctness would be irrelevant—software could be

used at any stage of the process and there would be no need to

verify it, because the entire election can be checked by result

verification. But in such an election, voters could also easily sell

their votes—for example, they could tell a vote-buyer where to

find their ballots online.

Verification 39

∗ ∗ ∗

In summary:

• Public confirmation that ballots are cast as intended

requires public records that are identifiable.

• Public confirmation of the tally by direct recount requires

public records that are vote-revealing.

• If any public records are identifiable and vote-revealing,

they enable bribery and coercion.

This suggests two possible kinds of public records:

1. Anonymous records that do reveal votes.

2. Identifiable records that don’t reveal votes.

Several proposals for voting systems, including those proposed

in this dissertation, publish records of the first kind. These

records enable direct result verification of the tally. Later in this

chapter, I’ll discuss end-to-end cryptographic voting systems, in

which both kinds of records are published, and an additional

verification step confirms the correspondence between the two.

Verification 40

What makes software hard to verify?

Most software is hard to verify because it is complex.

Here are some of the main reasons why complexity in

software is more difficult to manage than complexity in a

physical machine.

Number of components. The number of parts in a physical

machine is limited by the costs of manufacturing, but there is

no such limit on software. A software program costs the same

to distribute—virtually nothing—whether it contains ten

components or a million components. It is easier to add

complexity to a software program than to a physical device, and

removing code often has a higher risk of breaking the program

than adding new code. Requirements change and customers ask

for more features; in response, software tends to grow

boundlessly during the course of development, unless there are

determined and persistent efforts to keep it small.

Software programs also often incorporate large ready-made

packages of components written by others, to save the effort of

writing code from scratch. Even if only a small part of a

package’s functionality is used, it is easier to include the entire

package than to separate the parts that are used from those

that are not. These pressures lead to software applications with

millions of lines of code and thousands of interacting

components.

Complex interconnections. There are likely to be more

connections between the parts of a software program than

those of a physical machine. Whereas a machine part can only

interact with other parts near it, there is no limit on the number

of other parts that a software component can depend on. For

example, it is common for a single component to be relied upon

by thousands of other components.

These connections are also harder to see in software. The

way that a machine part affects other parts is usually clear from

Verification 41

direct physical inspection. But finding all the other software

components that depend upon a given software component can

be a difficult task.

Far-reaching effects. Because software components can be so

deeply interconnected, a small change in one part can affect

another part that is far away, affect parts written by different

people, or have wide-ranging effects on the behaviour of the

whole program. The software engineering practices of

modularity (dividing up a program into distinct modules) and

encapsulation (protecting each module from outside

interference) aim to limit these kinds of effects, but software

programs nonetheless tend to be more sensitive to change than

physical machines.

Nonlinearity. The power of general-purpose computers derives

from their ability to make decisions. With software, a tiny

change in input can yield a completely different outcome; for

example, a program can decide to behave one way when the

result of a calculation turns out to be zero and another way

when it is nonzero. This means that similar situations cannot be

assumed to yield similar behaviour. This nonlinear nature

makes it hard to predict how software will behave and hard to

test software thoroughly. Mechanical devices can be nonlinear

too, but software tends to be pervasively nonlinear.

∗ ∗ ∗

One of the most serious threats that is currently poorly

addressed in voting systems is the insider threat from software

developers. Intentionally placed bugs or backdoors are hard to

detect even when software is carefully audited [5]. The

persistent failure of the federal testing process to detect major

security flaws [21, 37] and the continuing revelations of security

vulnerabilities in certified voting systems [33, 43, 64, 84, 88]

suggest that voting software has not been audited anywhere

near enough to defend against this threat.

Verification 42

The complexity of software is what makes it difficult to be

sure: sure that the software will behave as expected, that it will

produce the correct results, and that it will resist determined

attempts to subvert the outcome of an election. Software

complexity is the ultimate enemy of reliable computer-based

elections.

There are two ways to fight this enemy: design the system

so less of the software needs to be verified, and simplify the

software that needs to be verified. Both can be applied together.

Verification 43

In what ways are today’s voting systems
verifiable?

Different voting systems offer different ways for voters to gain

confidence that the election results are correct. We can compare

systems by looking at what mechanism for assurance is

provided, if any, at each step of the process.

The two kinds of voting technology most commonly used in

the United States are optical scan systems and direct recording

electronic (DRE) systems.

Optical scan voting. When an election is conducted by optical

scan, paper ballots are prepared and printed before polls open.

Voters mark the ballots by hand and deposit them into a ballot

box. There are two variants of optical scan voting: the scanning

can take place at individual precincts or at a central election

office.

Although software is usually involved in preparing the

ballots, voters and candidates can verify for themselves the

sample ballots published before polling. Voters can also bring

sample ballots to the polling place and compare them with the

blank ballots they receive. This is an example of avoiding

software verification, which is possible because the results of

the preparation stage are public.

We know the ballot is presented exactly as prepared,

because the voter directly reads the printed paper. There is no

recording device to misrecord the voter’s marks; the voter is

responsible for clearly marking the paper to be counted. The

election relies on the physical durability of paper for the

integrity of printed ballots and recorded votes.

A precinct-based

optical scanner.

When scanning takes place at individual precincts, the

ballots pass through a scanning machine on their way into the

ballot box. After polls close, each machine prints out its counts

on a paper tape. If the paper tapes are posted immediately for

public viewing, then no one has to trust the software that does

the tallying. The final election report will contain both the

Verification 44

counts in each precinct and the overall totals. Anyone can

confirm that the locally posted results are correctly included in

the election report, and anyone can confirm that the overall

totals were calculated properly.

When scanning is performed centrally, voters can’t perform

the same check on the tally step. They have to trust election

personnel to safely transport the ballots from the polls to the

central office and to enter the results from the central scanner

into the software that tallies them (known as the election

management system, or EMS).

Figure 3.3 summarizes the mechanisms by which any

individual voter can ensure the validity of each step in this

process. (I’ll call this an assurance chart.)

counting
correctness

count-to-tally
integrity

tallying
correctness

ballot-to-voter
integrity

vote recording
correctness

ballot
correctness

ballot-to-poll
integrity

design
ballots

mark or
enter votes

present
ballots

distribute
ballots

count
votes

collect
votes

tally
subtotals

transmit
subtotals

C O R R E C T B A L L O T C A S T A S I N T E N D E D C O U N T E D A S C A S T

vote-to-count
integrity

cast
votes

published sample ballots paper

ballot box
in public view

results posted
at each
precinct

subtotals and
totals posted

online

precinct
optical scan

central
optical scan

election administrators recount ballots

scanner

personnelpersonnel

ballot box
in public view

EMS
EMS

scanner

Figure 3.3. Assurance chart for elections with hand-marked, optically scanned ballots.

The starbursts mark mechanisms that voters have to accept

on faith—they have to trust software they can’t see or people

they don’t know. For precinct-based scanning, voters have to

trust the software that controls the optical scanner. For central

scanning, the voters also have to trust the personnel who collect

the ballots and convey counts from the scanner to the EMS.

They also have to trust the EMS itself, since they have no way to

independently check that the totals were added up correctly.

Paper ballots provide a useful backup record, as they can be

recounted by hand or by machine. The same stack of ballots can

even be counted multiple times, and the counts from different

people or different machines can be compared to improve

Verification 45

confidence. In Figure 3.3, recounts are shown as a secondary

assurance mechanism, below the three boxes on the right. They

are shown as secondary because ordinary voters cannot conduct

or order recounts; only election administrators can do so.

DRE voting. Figure 3.4 shows what voters have to trust for each

step of an election process with a DRE voting system. There are

two possibilities here as well: the results from DRE machines

might be reported at each precinct, or they might be reported

only by the central election office.

counting
correctness

count-to-tally
integrity

tallying
correctness

ballot-to-voter
integrity

vote recording
correctness

ballot
correctness

ballot-to-poll
integrity

design
ballots

mark or
enter votes

present
ballots

distribute
ballots

count
votes

collect
votes

tally
subtotals

transmit
subtotals

C O R R E C T B A L L O T C A S T A S I N T E N D E D C O U N T E D A S C A S T

vote-to-count
integrity

cast
votes

DRE with
precinct-level

reporting

DRE with
central

reporting

individual voters check VVPATs; effective only if recounted election administrators recount VVPATs

personnel
personnel

personnelpersonnel

counts posted
at each
precinct

subtotals and
totals posted

online

DRE

DRE

DRE

DRE
EMS

EMS
EMS

EMS

Figure 3.4. Assurance chart for elections with direct recording electronic (DRE) voting.

When DRE machines are used, voters don’t get to see a

sample of the ballot definition in the machine, in the same way

that a sample ballot is a direct preview of what will be used on

election day. At best, voters might get images of the screens

displayed by the DRE, printed on paper. But, in general, they

don’t get to test-drive a DRE with the ballot definition they will

be using, and they can’t check whether their machines have

received the correct ballot definitions. Voters have to trust the

EMS, which produces the ballot definition files, the personnel

that operated the EMS, and the personnel that loaded the ballot

definitions into the DRE machines.

A DRE voting machine.

The DRE machines are responsible for presenting the

choices to the voter and recording the voter’s selections. For

these steps the voter is forced to trust that the DRE software is

correct. For the counting stage, voters have to trust either the

Verification 46

software in the DRE that counts and reports results locally, or

the software in the EMS that counts and tallies the results

centrally, along with the personnel that convey the information

to the EMS.

As a backup verification mechanism, some DRE machines

print voter-verified paper audit trails (VVPATs). This is a paper

tape that shows the voter’s selections for viewing and

confirmation by the voter. Printed VVPATs are retained by the

machine so that they can later be recounted if a recount is

deemed necessary. However, voter inspection of VVPATs is not

as strong a backup as voter inspection of paper ballots; in the

case of VVPATs, the thing being inspected is not what is

normally counted. With DRE machines, the results are derived

from the electronic records, not the VVPATs that voters see; the

VVPATs are only relevant if election officials decide to conduct a

recount.

A DRE with a VVPAT

printer (at lower right).

There are also good reasons to believe that voters are

unlikely to catch discrepancies on VVPATs. In a study by

Everett [25], voters using a mock DRE were shown a review

screen with selections different from what they had chosen, and

68% of voters failed to notice the changes. It seems likely that

even more voters would miss discrepancies on the VVPAT,

which is generally smaller than the screen and shown off to the

side of the machine.

As Figure 3.4 makes obvious, DRE voting systems depend

heavily on software. Because so little information is typically

published about these programs and their inputs and outputs,

trusting the outcome of such an election often requires trusting

virtually every piece of software in the system—software for

designing ballots, software that produces ballot definitions,

voting machine software, software that tallies votes, and all the

operating systems, compilers, editors, and other tools that were

used to produce these programs.

It doesn’t have to be this way. By publishing information

about the software and the data processed by that software, it’s

possible to reduce what voters have to accept on faith in order

to trust the validity of the election result.

Verification 47

What is the minimum software that needs to
be verified?

The degree to which software verification is avoidable depends

on a critical decision: how do voters indicate their votes—on

paper or on a computer? Of all the steps in the process, this one

is special because it must take place in private.

A big part of the present controversy over electronic voting

machines is a conflict about the user interface presented to

voters. Proponents of the machines point to the real benefits

that computers could offer in improved usability and

accessibility. For people with certain disabilities, voting

computers may be the only way to vote privately and

independently. Whether these advantages are enough to

outweigh the loss of a tangible, directly marked ballot is a

complicated question, and I argue for neither side of that issue

here. But an important factor in deciding whether vote entry

should occur on paper or on a computer is the feasibility of

ensuring the integrity of votes in either case.

Each of the two cases has its own answer to “what is the

minimum software that needs to be verified?”

Case 1: The paper option. If voters directly mark paper ballots,

the answer is “nothing.” To avoid all software verification, just

publicly count the ballots by hand right after the polls close.

Sample ballots, mailed out before polls open, let voters check

that the real ballots are printed correctly. There is no software

involved in marking and casting votes, only paper. And if the

results of the hand count are posted immediately at the polling

place, then no one has to trust the software that does the

tallying.

So, in a voting system where paper ballots are hand-marked

and hand-counted at the polls, any step that uses software can

be publicly checked by direct result verification. As with any

paper ballot system, the ballots are available to be recounted

later if necessary.

Verification 48

Figure 3.5 summarizes the preceding analysis in an

assurance chart.

published sample ballots
hand-marked,
hand-counted
paper ballots

paper
ballot box

in public view

multiple
counters in
public view

counts posted
at each
precinct

subtotals and
totals posted

online

election administrators recount ballots

counting
correctness

count-to-tally
integrity

tallying
correctness

ballot-to-voter
integrity

vote recording
correctness

ballot
correctness

ballot-to-poll
integrity

design
ballots

mark or
enter votes

present
ballots

distribute
ballots

count
votes

collect
votes

tally
subtotals

transmit
subtotals

C O R R E C T B A L L O T C A S T A S I N T E N D E D C O U N T E D A S C A S T

vote-to-count
integrity

cast
votes

Figure 3.5. Assurance chart for an election with hand-marked, hand-counted ballots.

Case 2. Entering votes by computer. In this case, the answer is

“just the vote-entry software.” Here’s why.

The “mark or enter votes” step, central to the voter

experience, also turns out to be critical in terms of verification.

This step cannot be publicly verified by result verification.

Result verification requires a complete record of inputs and

outputs. But one of the inputs to this step is the input from

individual voters, which must be kept private due to the

principle of the secret ballot. Moreover, if the ballot is

presented to the voter by a computer, the voter’s input is

subject to influence by the computer.

Therefore, if choices are presented or selected on a

computer, software verification is unavoidable. However, the

secret ballot is the only privacy requirement that elections have

to uphold. Recorded votes can be published as long as they

cannot be associated with any particular voter. The only part of

the process that needs to be secret—and thus the only part

for which software verification is really necessary—is from

the private interaction with an individual voter up until the

moment the voter’s votes are recorded in anonymous form.

That interval is the critical interval during which private

information gets turned into publishable information. All the

inputs and outputs for other steps can be published, so

everything else can be checked by result verification.

Verification 49

It follows that the way to minimize software verification is

to make that critical interval as short and simple as possible:

use software to present the ballot, accept selections from

voters, and record the votes in anonymous form, then publish

the anonymous votes immediately when polls close. The

preparation that takes place before the election produces a

ballot definition file for the voting machine. If this file is also

published, no one needs to verify the ballot preparation

software either. Figure 3.6 gives the assurance chart for this

case.

anonymous vote
records posted
at each precinct

published
ballot

definition

DRE with
published

vote records
anonymous vote records posted onlineDREpersonnel

counting
correctness

count-to-tally
integrity

tallying
correctness

ballot-to-voter
integrity

vote recording
correctness

ballot
correctness

ballot-to-poll
integrity

design
ballots

mark or
enter votes

present
ballots

distribute
ballots

count
votes

collect
votes

tally
subtotals

transmit
subtotals

C O R R E C T B A L L O T C A S T A S I N T E N D E D C O U N T E D A S C A S T

vote-to-count
integrity

cast
votes

Figure 3.6. Assurance chart for a DRE-based election with published ballot definition and

published, anonymous vote records.

In the ballot distribution step, voters have to assume that

election personnel have properly distributed the ballot

definitions and loaded them into the machines; they have no

way to check this for themselves. And in the ballot presentation

and vote recording steps, voters still have to trust the software

in the DRE machine.

Practical example. Here’s one way that an election with

computerized voting but minimal software verification could be

carried out in practice.

The software for the voting computer would be written to

run on a free computing platform, and finalized and published

far in advance of the election so that everyone has time to

inspect it and test it. The ballot definition files for the election

would be published on government websites, also far enough in

advance that members of the public have time to examine them

Verification 50

before the polls open. Anyone would be able to download a

ballot definition and run the voting computer software on their

own computer to see exactly what will be shown to voters on

election day. This provides a chance to detect omitted races,

misspelled candidate names, layout errors, and other ballot

errors. Thus, the published ballot definition file serves a similar

purpose to the paper sample ballot typically mailed to voters

before an election.

When a polling place stops accepting new votes at the end

of the day, each machine should contain a vote file containing

all of its anonymously recorded votes. At this point, every

machine would print out a cryptographic hash of its vote file;

observers can copy down (or photograph) the hashes. A

cryptographic hash is a number derived from the contents of a

file in such a way that it is easy to calculate the hash for a given

file, but difficult to produce a different file that yields the same

hash. Publishing the hash makes a public commitment to the

contents of the file. (The reason for using a hash is that it is less

cumbersome than printing out the entire vote file, but it serves

the same purpose.)

The anonymous vote files from every machine would then

be published online for all to see after the election. Anyone can

calculate the hashes of these files and compare them to the

hashes that were printed on election night, to verify that the

files are authentic and unaltered. And anyone can count the

votes in these files to confirm that the tallying is performed

correctly.

The consequence is that neither the ballot layout software

nor the vote tallying software would need to be verified. The

published ballot definitions, voting computer software, and

anonymous vote records would be sufficient to allow members

of the public to independently check the accuracy of the

election outcome.

Verification 51

What other alternatives for verification are
possible?

Electronic ballot markers and printers. An electronic ballot

marker (EBM) is a computer that marks a paper ballot [80, 81].

The voter inserts a paper ballot and makes selections on the

computer, and the EBM prints marks onto the ballot in the

appropriate positions. An electronic ballot printer (EBP) is a

computer that prints out a marked paper ballot. No ballot is

inserted; the voter makes selections on the computer, and the

EBP prints out a fresh paper ballot that indicates the voter’s

choices. In both cases, the voter then deposits the paper ballot

into a ballot box as usual.

EBMs and EBPs occupy a middle ground between optical

scan systems and DRE systems. They provide the flexibility of a

computerized user interface for voting, together with a durable

paper record that can be recounted later. Like a DRE machine,

an EBM or EBP relies on a ballot definition file to describe the

choices to present to the voter, and the proper recording of the

voter’s choices depends on the software running in the EBM or

EBP. But the voter now has the option of checking the printed

ballot before casting it, instead of having to trust this software.

And unlike the printed VVPAT produced by a DRE, this printed

ballot is always counted, so the voter’s check is more effective.

counting
correctness

count-to-tally
integrity

tallying
correctness

ballot-to-voter
integrity

vote recording
correctness

ballot
correctness

ballot-to-poll
integrity

design
ballots

mark or
enter votes

present
ballots

distribute
ballots

count
votes

collect
votes

tally
subtotals

transmit
subtotals

C O R R E C T B A L L O T C A S T A S I N T E N D E D C O U N T E D A S C A S T

vote-to-count
integrity

cast
votes

EBM/EBP with
precinct

optical scan

EBM/EBP with
central

optical scan

election administrators recount ballotsindividual voters check paper ballots

personnel
EBM/EBPpersonnel

EMS

ballot box
in public view

results posted
at each
precinct

subtotals and
totals posted

online
scanner

personnelpersonnel

ballot box
in public view

EMS
EMS

scanner

Figure 3.7. Assurance chart for an election with electronically marked or printed, optically

scanned ballots.

Verification 52

The corresponding assurance chart, in Figure 3.7, has a left half

similar to that of a DRE system, and a right half similar to that

of an optical scan system.

End-to-end cryptographic voting. There are several proposed

voting systems that provide end-to-end cryptographic methods

for letting voters verify the election. “End-to-end” refers to the

ability of any individual voter to check that his or her ballot

survived from one end of the process straight through to the

other—from casting to the final result—without special access

from election officials.

Recall that earlier in this chapter, I described two possible

kinds of publishable records—anonymous vote-revealing

records, and identifiable but non-vote-revealing records.

End-to-end cryptographic schemes publish records of the

second kind as well as the first kind. Examples of these

schemes are Punchscan [26], Scratch & Vote [1], Prêt-à-Voter [13],

and VoteHere [54]. What they all have in common is that they

publish some information about each voter’s ballot: enough to

let the voter partially check the recorded ballot, but not enough

to reveal an actual vote so a voter can sell it. That is, indirect

result verification is used to ensure the integrity of individual

ballots. The partial records are set up in such a way that, with

enough voters checking this partial information, the likelihood

of an incorrectly posted ballot is nearly zero.

In addition to the partial ballots, actual vote records are

separately posted—but these votes have been shuffled so they

cannot be associated with particular voters. Anyone can count

the posted votes to check the tally. The shuffling is performed

using a system called a “mix net,” in which multiple parties

participate in the shuffling; no single party learns the total

shuffling order, and thus voter privacy is protected.

In these end-to-end cryptographic schemes, the election

authorities keep some secret information that enables them to

process the ballots into verifiable totals, and the ballots contain

serial numbers or cryptographic information as well. In all of

these schemes, there is a pre-election audit procedure that lets

Verification 53

voters ensure that this information is consistent and properly

formed. After the election, voters can also audit the shuffling

procedure to confirm that the posted partial ballots correspond

to the posted anonymous vote records, and thus to the tally.

The same mathematical techniques can be applied to votes

cast in any fashion (by hand-marked paper, by machine-marked

paper, or directly by machine). When hand-marked paper is

used, the election can completely escape dependence on

software. Figure 3.8 summarizes how assurance is provided in

this category of systems.

counting
correctness

count-to-tally
integrity

tallying
correctness

ballot-to-voter
integrity

vote recording
correctness

ballot
correctness

ballot-to-poll
integrity

design
ballots

mark or
enter votes

present
ballots

distribute
ballots

count
votes

collect
votes

tally
subtotals

transmit
subtotals

C O R R E C T B A L L O T C A S T A S I N T E N D E D C O U N T E D A S C A S T

vote-to-count
integrity

cast
votes

hand-marked
ballot with
end-to-end
verification

EBM/EBP with
end-to-end
verification

DRE with
end-to-end
verification

individual voters check paper ballots

individual voters check receipts

pre-election
public audit

pre-election
public audit

paper

voters' receipts;
(partial or encrypted)
ballots posted online

post-election
public audit

anonymous vote records
posted online

pre-election
public audit

EMS

EMS
DRE

EBM/EBP

personnel

personnel

personnel

Figure 3.8. Assurance chart for elections with end-to-end cryptographic verification.

Non-cryptographic end-to-end schemes. Of special note are

ThreeBallot, VAV, and Twin [67], which provide end-to-end

verification without cryptography. These schemes publish all

the cast ballots, which anyone can recount to verify the tally. In

ThreeBallot and VAV, only some of the posted items are

identifiable. Each voter’s ballot is split into three parts; although

all the parts are posted, the voter gets a receipt for only one

part—and a single part isn’t enough to reveal how they voted.

In Twin, each voter gets a receipt for someone else’s ballot.

Thus, while the posted records can be matched with receipts,

they can’t be identified as belonging to any particular voter. The

Verification 54

assurance chart for all these schemes is similar to Figure 3.8,

except there is no need for a post-election cryptographic audit

because no encryption or shuffling has taken place.

Comparing voting systems. Figure 3.9 summarizes several

types of voting systems on a single chart for comparison.

For conventional paper-based systems, shown at the top,

any method of marking ballots (by hand, by EBM, or by EBP) can

be combined with any method of counting ballots (by hand

count, by precinct optical scan, or by central optical scan). Next

come the conventional electronic systems, based on DREs; then

the end-to-end cryptographic systems. Finally, at the bottom is

the DRE with its ballot definition and results published, as well

as a variant of the same scheme using an EBM or EBP instead.

The systems least dependent on software (all other concerns

aside) are the hand-marked, hand-counted paper ballots and the

hand-marked ballots with cryptographic verification.

If one chooses to exclude the systems with hand-marked

ballots (shaded in grey) from consideration, due to the potential

usability, accessibility, and accuracy advantages of computer-

based vote entry, then the bottom two options in the “public-

ballot electronic” category are the least dependent on software.

A system based on a DRE with a published ballot definition and

published vote records will use the least amount of critical

software, but also requires voters to place great trust in that

software. A system based on an EBP with a published ballot

definition will be dependent on the optical scanner’s software

as well as the EBP software, but both software-dependent steps

are subject to paper-based checks. The choice between these

two options would depend on one’s confidence in the ability to

verify DRE software and one’s estimate of the likelihood that

significant errors will be caught by observant voters and

recounts.

All of the systems that involve entry of votes using any kind

of voting computer—DRE, EBM, or EBP—could stand to benefit

from easier verification of the software in that computer. This

is where we will turn our attention in the next chapter.

Verification 55

counting
correctness

count-to-tally
integrity

tallying
correctness

ballot-to-voter
integrity

vote recording
correctness

ballot
correctness

ballot-to-poll
integrity

design
ballots

mark or
enter votes

present
ballots

distribute
ballots

count
votes

collect
votes

tally
subtotals

transmit
subtotals

C O R R E C T B A L L O T C A S T A S I N T E N D E D C O U N T E D A S C A S T

vote-to-count
integrity

cast
votes

PUBLIC-BALLOT
ELECTRONIC

electronic
ballot printer

published
ballot

definition

anonymous vote
records posted
at each precinct

published
ballot

definition

direct
recording
electronic

anonymous vote records posted online

ballot box in
public view

counts posted
at each
precinct

subtotals and
totals posted

online

individual voters check paper ballots election administrators recount ballots

DRE

personnel

personnel

scannerEBP

hand-marked
paper ballot

END-TO-END
CRYPTOGRAPHIC

electronic
ballot marker

or printer

direct
recording
electronic

pre-election
public audit

pre-election
public audit

paper

voters' receipts;
(partial or encrypted)
ballots posted online

post-election
public audit

anonymous vote records
posted online

pre-election
public audit

individual voters check paper ballots

individual voters check receipts

EMS

EMS
DRE

EBM/EBP

personnel

personnel

personnel

personnel
personnel

personnelpersonnel

direct
recording
electronic

precinct
reporting

central
reporting

counts posted
at each
precinct

subtotals and
totals posted

online

CONVENTIONAL
ELECTRONIC

individual voters check VVPATs; effective only if recounted election administrators recount VVPATs

DRE

DRE

DRE

DRE
EMS

EMS
EMS

EMS

hand-marked
paper ballot

scanner

personnelpersonnel
personnel

EBM/EBP

published sample ballots paper

electronic
ballot marker

or printer

ballot box in
public view

ballot box in
public view

multiple
counters in
public view counts posted

at each
precinct

subtotals and
totals posted

online

precinct
hand

counting

precinct
optical

scanning

central
optical

scanning

individual voters check paper ballots

CONVENTIONAL
PAPER-BASED

election administrators recount ballots

personnel
EMS

EMS
EMS

scanner

Figure 3.9. Summary of assurance mechanisms for various types of voting systems.

Verification 56

