
Zest: Discussion Mapping for Mailing Lists 

Ka-Ping Yee
Group for User Interface Research
University of California, Berkeley

ping@zesty.ca

ABSTRACT 
Structured mapping and coordination techniques are
effective for making sense of conversations and building
organizational memory. This paper proposes a new method
for processing e-mail that brings these benefits to mailing
lists. The technique leverages existing e-mail conventions
instead of requiring participants to communicate within an
imposed framework. Zest, a prototype browser for e-mail
discussions, processes a standard e-mail folder, and
displays a concise, conversation-like overview of the
discussion in progress. In effect, Zest transforms an
ordinary mailing list into a structured conversation system,
without the need for special client software, and without the
rigid formalism that previous such systems forced upon
their users. Informal evidence suggests that the overviews
shown by Zest are more readable and effective than the
threaded message views that e-mail clients currently
provide, and also that Zest stands a better chance of
adoption than previous structured conversation tools.

Keywords 
Electronic mail, threading, critical discussion, argument
visualization, organizational memory, decision support,
issue-based information systems.

INTRODUCTION 
E-mail is the single most prevalent computer-mediated
communication medium. Mailing lists are a popular CSCW
tool for long-term discussion, probably because they are
simple to understand, they require no special client
software or training, and they are straightforward to
administer. Several mailing list management programs such
as Mailman, Listserv, and Majordomo are available for free
and are relatively easy to set up; free list hosting services
such as Yahoo! Groups are also available on the Web.

Electronic mailing lists are in extremely widespread use. In
July 2000, for example, eGroups claimed to have 17.5
million users [6]; today it is part of Yahoo! Groups, which
claims to offer “hundreds of thousands of e-mail groups”.
Typical lists have somewhere from a dozen to a few
hundred subscribers, and particularly active lists can
generate a hundred or more messages a day. Organizing
and reading all of these messages can be a significant

problem, and it is common to hear colleagues comment that
they feel overwhelmed by mail they get from mailing lists.

Often mailing lists are used as an informal coordination and
decision-making venue for teams in the workplace,
geographically distributed software development groups, or
technical standards working groups. In such contexts, the
archived discussion can be an especially important resource
for maintaining organizational memory. Participants can
use the archive to catch up on missed messages, to
determine the resolution of an open issue, to find the
rationale for a particular decision, or to answer questions of
their own that have already been asked by others. However,
existing archiving tools for e-mail are not as strong as they
might be in supporting these tasks, and more sophisticated
visualization tools are not very widely used.

This work aims to improve the ability of mailing lists to
serve as an organizational memory and decision support
medium, while helping users deal with high mail volume.

RELATED WORK 
E-mail and newsgroup client programs embed standard
RFC822 headers into messages to link replies. When the
user composes a reply to another message, the Message-ID
of the original message is placed in an “In-Reply-To”
header on the reply message. Newsgroup readers, mail
archiving tools, and e-mail client programs use this
information to produce a threaded view consisting of an
outline list where each message is represented by its subject
line, and the subject lines of replies are indented beneath
the messages to which they reply. The use of these
message-to-message reply links and the outline-style
presentation of message threads is practically universal
among all known popular mail processing software.

There have been many projects to date in visualizing
textual discussions, some of which go beyond the e-mail
domain. Threaded Chat [10] lets users manually attach
individual chat messages as replies to others, so that a
conversation becomes an evolving tree rather than a
scrolling list of messages. Chat Circles, Conversation
Landscape, and Loom [2] give an overview of behavioural
patterns, but do not show content in a way that would
support collaborative tasks; they are intended to be social
visualizations rather than organizational memory tools.
Netscan [9] provides several visualizations for newsgroup
discussion structure, most notably time-based thread tree
and piano roll views, but none of its visualizations display
any message content. An advanced e-mail client under
development at IBM [8] also includes a time-based thread



tree without message content; for showing content, the
client displays miniaturized views of entire messages.
Thumbnails can be helpful for finding a previously seen
message, but not for extracting the outcome of a discussion.

Past efforts to identify and visualize conversation structure
include The Coordinator and IBIS. The Coordinator [4]
drew on speech act theory to organize conversations in
terms of requests, commitments, offers, and so on.
Deployment failed in practice because users were unwilling
to fit every message into the explicit categories that The
Coordinator imposed. IBIS [7] organizes arguments into
nodes, each of which is an issue, position, or argument,
joined by eight types of links. IBIS has been implemented
in a graphical tool, gIBIS [1]. Studies have observed that
the overhead of specifying structure can be an obstacle to
its use, and the tendency of discussions to be sidetracked by
debates on the correct use of the IBIS structure [1] further
suggests that the structure may be too rigid.

Existing tools, then, generally fall into two categories:

(a) those that work with existing e-mail or newsgroup
discussions, hence requiring no change in practice, but
yield relatively little conversational structure (only
basic threading at a whole-message granularity);

(b) those that can build rich conversational structures, but
require a large change in practice, as they do not work
with e-mail at all and impose an entirely new
discussion medium.

The goal of this work is to achieve the benefits provided by
structured conversations without the pitfalls. The tools in
category (b) actually suffer from two barriers to adoption:
they ignore the installed base of e-mail software, and they
impose extra work on users even after they have switched
to new software. Zest avoids both problems, as it is
designed to work with e-mail exactly as it is written today
(and even with previously archived e-mail).

DESIGN 
Methods for quoting text from other messages are fairly
standardized, both in writing conventions and in e-mail
client software. There are only a few major quoting styles,
and almost all of them set off quoted text from the left
margin by a column of “>” symbols, so quoted text is easy
to detect. Zest divides each message into contiguous blocks
of quoted or unquoted text calledsections. Established
e-mail writing conventions make it safe to assume that
unquoted text immediately following a quoted section is a
reply to the text of that quoted section.

Sections are then threaded according to these quote-reply
chains. For messages that cannot be threaded according to
quoted text, we fall back on whole-message threading
based on message headers. Each connected tree of message
sections then constitutes one thread. Although each section
belongs to one thread, a message may belong to more than
one thread if it replies to sections from different threads.
The default main index of the message archive is a listing
of threads by the date of most recent activity.

In the overview for an individual thread, each section is
represented by the sentences in its first two lines. This gives
a much more relevant overview of the content than simply
repeating the subject line many times. To keep the
summary concise, not all sections appear. Any section that
replies to or is replied to by another section appears; also,
the first section of any message not otherwise represented
by some section appears.

The result is a remarkably natural point-counterpoint
summary of the thread that reads like a conversation.
Informal tests show that this technique can produce
reasonable results from real e-mail written by authors with
no knowledge of the threading algorithm.

OPTIONAL FEATURES 
We allow users to easily turn their overview into an
argument map using an optional typographic convention.
By inserting a textual symbol called acriticon at the
beginning of any paragraph, users can force a section break
and tag the new section as one of four types:[?] marks a
question,[#] marks a statement,[+] marks a supporting
argument, and[-] marks an opposing argument. This
four-type scheme provides most of the useful semantics of
IBIS, but is simpler and easier to remember.

The special criticon[!] marks a section as an alleged
resolution of a discussion and flags the entire thread
resolvedin the listing of threads.

In the thread summary, these types are shown with small
coloured icons, but the criticons themselves remain visible
in the text of messages, just as they were typed. The use of
symbols typed into the message body, and their visibility in
the messages when they are received and displayed,
supportlearning by example, as highlighted below.

APPLICATIONS 
Zest allows participants to quickly see which issues are
resolved or open, and what questions have already been
asked and answered. A glance at the colours of the icons
displayed in the overviews can give a rough sense of the
group’s opinion. Looking at the icons next to author names
can suggest who best to ask for help on a given topic.

When a mailing list is used as a medium for long-term or
distributed meetings, it can serve as a meeting-capture tool.
In particular, Zest supports the capture of design rationale.

The structure provided by Zest can also improve group
decision-making. A previous study has shown that groups
are more likely to arrive at a consensus if their online
interactions are structured [3]. Improved access to the
content of previous discussions could help keep
participants from rehashing old debates and repeating the
same mistakes in reasoning, thus also increasing the
group’s ability to reach consensus.

Because all of these benefits support the use of mailing lists
for debate and critical discussion, public policy and
e-democracy are exciting potential application domains;
however, truly adversarial situations are not addressed here.



EXAMPLE 
Figures 1, 2, and 3 illustrate the basic algorithm. Figure 1
shows two messages from the developers’ mailing list for
E, a secure programming language. Tyler’s message
suggests (a) a new design heuristic and (b) that there should
be no separate “type” object. Chip’s message responds to
both suggestions. Figure 2 shows the outline produced from
these two messages by standard threading (using
Pipermail). Figure 3 shows the overview displayed by Zest.

After Chip’s message, several more messages were written
on this thread. In Figure 4, the Zest browsing interface
shows the entire thread. For this figure only, criticons were
added to the messages to demonstrate how they would be

used in practice. Had the messages been left untouched,
only the triangular icons in the left pane would be missing.

Notice that the overview (Figure 4, left pane) effectively
captures the knowledge exposed by the discussion,
including the answer to Tyler’s suggestion and its rationale.
In particular, it yields the answers to questions such as:

• Why are the type and maker objects separate?

• What design principles are being applied?

• Why are type objects necessary?

— yet no natural language processing was needed, andno
extra workwas required from the participants.

From: Tyler Close <tyler@lfw.org>
To: Ka-Ping Yee <ping@lfw.org>
Cc: e-lang@eros.cis.upenn.edu
Subject: Re: Types, Makers, and Inheritance
Date: Tue, 20 Oct 1998 02:37:46 –0400

[...excerpt...]

I would like to propose a new design heuristic. Anything that causes
Ping to make a diagram is too complex and must be simplified.

I would like the type object and the maker to be identical (ie: no
separate type object). I will also reiterate my desire to eliminate
inheritance.

Tyler

From: Chip Morningstar <chip@communities.com>
To: e-lang@eros.cis.upenn.edu
Subject: Re: Types, Makers, and Inheritance
Date: Tue, 20 Oct 1998 09:33:19 –0700 (PDT)

Tyler sez:
>I would like to propose a new design heuristic. Anything that causes
>Ping to make a diagram is too complex and must be simplified.

I think this is a fine heuristic, as long as our benchmark is Ping and
not MarkM. MarkM will make a diagram for anything :-)

>I would like the type object and maker object to be identical (ie: no
>separate type object). I will also reiterate my desire to eliminate
>inheritance.

I agree. While the separation of the type and maker has a certain
conceptual elegance, this does not IMHO come near to offsetting the
additional cognitive and notational overhead of having yet another
abstraction to keep track of, explain, code, etc.

Chip

Figure 1. Two actual e-mail messages from the E language developers’ mailing list.

Figure 2. Standard subject-threaded view. Figure 3. Zest content-threaded view.

Figure 4. In this view of the entire thread, the user has selected Mark’s reply (shaded, at bottom) to Tyler’s question.
The content-threaded outline generated by Zest, at left, provides a conversation-like overview of this exchange.



PHILOSOPHY 
How is Zest able to produce more structure than previous
mail processing tools, even when it processes exactly the
same e-mail? It obtains extra information in two ways: it
takes better advantage of existing e-mail conventions, and
it offers the user ways tooptionallyadd more structure.

Zest exemplifies a “gentle seduction” design philosophy1

for CSCW applications: that is, the system behaves in
familiar ways when used conventionally, but users can
voluntarily take advantage of fancier features, and thereby
reap direct rewards. Rather than confronting current
practice with an extinction-level event, we encourage
practice to graduallyevolvefrom current practice towards a
practice that benefits more fully from new features.

This philosophy emphasizes four properties:

• predictability

• backward compatibility

• ability to learn by example

• visible payoff

The threading algorithm is intentionally kept simple and
predictable so that users can choose to write e-mail to get
the effect they want (for example, placing the most
important sentence first in a paragraph). It is backward
compatible with current e-mail conventions so that users
are not forced to learn new conventions right away. The
new conventions are clearly visible and easy to understand
so that users can learn by observing how other users apply
the conventions. When newcomers try the extra features,
their visible effects promote continued use.

The “gentle seduction” design philosophy is specifically
aimed at addressing six of Grudin’s eight challenges for
groupware developers [5]:

• predictability simplifies exception handling and
reduces the likelihood of intuition failure;

• backward compatibilityhelps to evade critical
mass problems, and also alleviates the problem of
designing for infrequently used features;

• ability to learn by exampleaddresses the problem
of acceptance;

• visible payoffreduces the perception of disparity
between expender of effort and receiver of benefit,
and helps relieve Prisoner’s Dilemma problems.

EVALUATION 
A natural next step is a user study. Although a formal user
study of this tool has not yet been conducted, there is some
evidence to believe that it has promise.

First, criticons have already successfully demonstrated the
learning by exampleproperty. As an experiment, a few
members of a mailing list, including myself, began

1 “The Gentle Seduction” is the title of a short story by Marc
Stiegler about the gradual adoption of radical new technologies.

inserting criticons into our normal postings as a way of
calling attention to important points. Before long, several
others had picked up the practice of using them; many did
so without asking any questions, and all used them
correctly. This took place even though there was no
software tool analyzing the messages; people used criticons
merely in order to clarify their messages to other people.

Second, there is evidence from current practice to support
the viability of manual typographic annotations. On some
developers’ lists, participants already write “+1” or “ -1 ” to
indicate their opinion on an issue. This suggests that people
are willing to follow simple structural conventions.

Third, Figures 3 and 4 demonstrate that even if no one
decided to annotate their messages, the resulting summary
would still be more useful than the outlines produced by
current tools. Most people were taught to begin paragraphs
with topic sentences and already do so as a matter of habit.

Finally, Zest has been informally evaluated. When a
summarized thread, generated from real, unedited e-mail
taken from a real mailing list, was shown to an audience of
about fifty developers, most responded positively and
expressed interest in using Zest when it becomes available.

DEMONSTRATION 
The presenter is the author of Zest. Attendees will be able
to try out the Zest interface on a laptop to explore large
online discussions. The demo requires only desk space.

ACKNOWLEDGEMENTS 
The idea of threading messages by paragraphs and
quotations instead of subject lines was first suggested by
Terry Stanley in 1997. Mark S. Miller also contributed to
this work.

REFERENCES 
1. J. Conklin, M. L. Begeman. gIBIS: A hypertext tool for

exploratory policy discussion.Proc. of CSCW ’98, p. 140–152.

2. J. Donath, K. Karahalios, and F. Viegas. Visualizing
Conversations.Proc. of HICSS 32, Jan 1999.

3. S. Farnham, H. Chesley, D. McGhee, R. Kawal, J. Landau.
Structured Online Interactions: Improving the Decision-Making
of Small Discussion Groups.Proc. of CSCW 2000, p. 299–308.

4. F. Flores, M. Graves, B. Hartfield, T. Winograd. Computer
Systems and the Design of Organizational Interaction.ACM
Trans. on Information Systems6(2), p. 153–172, 1988.

5. J. Grudin. Groupware and Social Dynamics: Eight Challenges
for Developers.Comm. of the ACM37(1), p. 92–105, Jan. 1994.

6. G. C. Hill, R. King. Dry Spell: A Startup Survival Guide.
Business 2.0, Sep. 2000.

7. W. Kunz, H. Rittel. Issues as elements of information systems.
Working Paper 131, Institute of Urban and Regional
Development, University of California, Berkeley, 1970.

8. S. Rohall, D. Gruen, P. Moody, S. Kellerman. E-mail
Visualizations to Aid Communications.Proc. of IEEE
Symposium on Information Visualization 2001.

9. M. Smith, A. T. Fiore. Visualization Components for
Persistent Conversations.Proc. of CHI 2001, p. 136–143.

10. M. Smith, J. J. Cadiz, B. Burkhalter. Conversation Trees and
Threaded Chat.Proc. of CSCW 2000, p. 97–105.


